×

Positive solution for Neumann problem with critical nonlinearity on boundary. (English) Zbl 0780.35036

Let \(\Omega\subset\mathbb{R}^ n\), \(n\geq 3\), be a bounded domain with \(C^ 4\) boundary \(\partial\Omega\). Let \(\Gamma_ 0\) and \(\Gamma_ 1\) be \((n- 1)\)-dimensional submanifolds of \(\partial\Omega\) such that \(\Gamma_ 0\cap \Gamma_ 1=\emptyset\) and \(\partial\Omega= \Gamma_ 0\cup \Gamma_ 1\). Define \(H(\Gamma_ 0)=\{u\in H^ 1(\Omega)\); \(u=0\) on \(\Gamma_ 0\}\). Let \(\alpha\in L^ \infty(\Omega)\) and \(\beta\in C^ 1(\Gamma_ 1)\) be such that \[ \| u\|^ 2= \int_ \Omega | \nabla u|^ 2 dx +\int_ \Omega \alpha u^ 2 dx+2^{-1} (n-2) \int_{\Gamma_ 1} \beta u^ 2 dy \] defines an equivalent norm on \(H(\Gamma_ 0)\). For \(u\in H(\Gamma_ 0)\) and \(q=n(n-2)^{-1}\), define \(Q(u)=\| u\|^ 2 (\int_{\partial \Omega} | u|^{q+1} dy)^{-2(q+1)^{-1}}\). Let \(S_ 1=\inf\{ \int_{\mathbb{R}^ n_ +} | \nabla u|^ 2 dx\); \(u\in H^ 1(\mathbb{R}^ n_ +)\), \(\int_{\mathbb{R}^{n-1}} | u|^{q+1} dx=1\}\), be the best constant in the trace imbedding for the half-space. For \(x\in\partial\Omega\) let \(\lambda_ i(x)\), \(1\leq i\leq n-1\), denote the principal curvatures and \(H(x)=(n-1)^{-1} \sum^{n-1}_{i=1} \lambda_ i(x)\) the mean curvature at \(x\) with respect to the unit outward normal.
Consider the following problem \[ \begin{cases} -\Delta u+ \alpha u=0 \text{ in }\Omega; \;u>0 \text{ in }\Omega;\;u=0 \text{ on } \Gamma_ 0,\\ \partial u/\partial\nu+ 2^{-1}(n-2) \beta u=u^{n(n-2)^{-1}} \text{ on } \Gamma_ 1.\end{cases} \tag{1} \] The main purpose of this paper is an existence result for solutions in \(H^ 1(\Omega)\) of the problem (1). To this end assume that there exists a point \(x_ 0\) in the interior of \(\Gamma_ 1\) and a neighbourhood \(U(x_ 0)\) of \(x_ 0\) such that \(\Omega\cap U(x_ 0)\) lies on one side of the tangent plane at \(x_ 0\). Further assume that either of the following holds:
\((\beta(x_ 0)<H(x_ 0)\), \(n\geq 3)\) or \((\beta(x_ 0)= H(x_ 0)\), \(n\geq 5\); \((n-2)(n-4) \sum_{i\neq j} (\lambda_ i(x_ 0)- \lambda_ j(x_ 0))^ 2+ 4(n-1)^ 2 \alpha(x_ 0)<0\); \(\alpha\) is \(C^ 1\) in a neighbourhood of \(x_ 0)\). Then the problem (1) admits a solution \(u\in H^ 1(\Omega)\) with \(Q(u)<S_ 1\).
Reviewer: D.M.Bors (Iaşi)

MSC:

35J65 Nonlinear boundary value problems for linear elliptic equations
35B05 Oscillation, zeros of solutions, mean value theorems, etc. in context of PDEs
Full Text: DOI

References:

[1] Adimurthi, Pisa. Ed. by Ambrosetti and Marino (1991)
[2] Adimurthi, Comm. Part. Diff. Equations 15 pp 461– (1990) · doi:10.1080/03605309908820694
[3] Adimurthi, Proc. Indian Acad. Sci. 100 pp 275– (1990)
[4] Aubin T., Nonlinear analysis on manifold Monge”Ampere Equations (1982) · Zbl 0512.53044 · doi:10.1007/978-1-4612-5734-9
[5] Brezis H., Ed by Crandall etc. pp 17– (1987)
[6] DOI: 10.1016/0022-1236(84)90094-6 · Zbl 0552.58032 · doi:10.1016/0022-1236(84)90094-6
[7] DOI: 10.1512/iumj.1988.37.37033 · Zbl 0666.35014 · doi:10.1512/iumj.1988.37.37033
[8] Lions P. L., The limit case, Rev. Mat. Iberoamericana 1 pp 145– (1985) · Zbl 0704.49005 · doi:10.4171/RMI/6
[9] DOI: 10.1007/BF02567912 · Zbl 0717.35029 · doi:10.1007/BF02567912
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.