×

Dixon-Selberg summation over local number fields. (English) Zbl 0780.11062

The authors present and prove a character sum analog of Selberg’s multidimensional beta function integral that is valid over any local completion field \(\mathbb{K}\) of \(\mathbb{Q}\) (\(\mathbb{K}\) is \(\mathbb{R}\) or a \(p\)-adic field \(\mathbb{Q}_ p\)) although if \(p=2\), it has only been proved for characters of rank less than 4: \[ \int {{dx} \over {| x(1-x)|}} \int {{dy} \over {| y(1-y)|}} \pi_ 1(xy)\pi_ 2((1-x)(1- y))\pi^ 2_ 3(x-y)= {\textstyle {1\over 2}} \sum_ \tau S(\pi_ 1,\pi_ 2,\pi_ 3,\pi_ \tau) \] where \[ S(\pi_ 1,\pi_ 2,\pi_ 3)= {{\Gamma(\pi_ 0 \pi_ 3^ 2) \Gamma(\pi_ 1)\Gamma(\pi_ 1,\pi_ 3)\Gamma(\pi_ 2)\Gamma (\pi_ 2\pi_ 3)} \over {\Gamma(\pi_ 0\pi_ 3) \Gamma(\pi_ 1\pi_ 2\pi_ 3) \Gamma(\pi_ 1\pi_ 2\pi_ 3^ 2)}} \] and \[ \Gamma(\pi)=\int_ \mathbb{K} {{dx} \over {| x|}}\chi(x)\pi(x). \] Here \(\chi(x)\) is an additive character, \(\pi_ 0(x)= | x|\), \(\pi_ i(x)\) are arbitrary multiplicative characters. The sum is over the quadratic classes of the number field with \(\pi_ \tau\) the corresponding local quadratic character.

MSC:

11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.)
11L05 Gauss and Kloosterman sums; generalizations
33C80 Connections of hypergeometric functions with groups and algebras, and related topics
Full Text: DOI

References:

[1] Selberg A., Nor. Math. Tidsskr. 26 pp 71– (1944)
[2] Dixon A. C., Proc. London Math. Soc. 2 pp 8– (1904)
[3] DOI: 10.1137/0513070 · Zbl 0498.17006 · doi:10.1137/0513070
[4] DOI: 10.1063/1.1704009 · Zbl 0133.45202 · doi:10.1063/1.1704009
[5] DOI: 10.1016/S0550-3213(85)80004-3 · doi:10.1016/S0550-3213(85)80004-3
[6] Evans R. J., Enseign. Math. 27 pp 197– (1981)
[7] DOI: 10.1090/S0273-0979-1981-14930-2 · Zbl 0471.10028 · doi:10.1090/S0273-0979-1981-14930-2
[8] DOI: 10.1016/0370-2693(87)91357-8 · doi:10.1016/0370-2693(87)91357-8
[9] DOI: 10.1142/S0217732389001970 · doi:10.1142/S0217732389001970
[10] DOI: 10.1142/S0217732389001970 · doi:10.1142/S0217732389001970
[11] DOI: 10.1142/S0217732389001970 · doi:10.1142/S0217732389001970
[12] DOI: 10.1142/S0217732389001970 · doi:10.1142/S0217732389001970
[13] DOI: 10.1142/S0217732389001970 · doi:10.1142/S0217732389001970
[14] DOI: 10.1063/1.528468 · Zbl 0709.22011 · doi:10.1063/1.528468
[15] Davenport H., J. Reine Angew. Math. 172 pp 151– (1935)
[16] DOI: 10.1112/blms/5.3.325 · Zbl 0269.10020 · doi:10.1112/blms/5.3.325
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.