×

Size effects on centrosymmetric anisotropic shear deformable beam structures. (English) Zbl 07777496

Summary: In this paper, the size effect on beam structures with centrosymmetric anisotropy is studied within strain gradient elasticity theory. Applying dimension reduction to the three dimensional anisotropic gradient elasticity, the third-order shear deformable (TSD) beam is analysed. A variational approach is used to determine the equilibrium equations of TSD beam together with consistent (classical and non-classical) boundary conditions. The TSD beam theory which is suitable for deep beam structures can be replaced by (less complicated) Euler-Bernoulli beam model for thin beam structures. The anisotropic Euler-Bernoulli beam model is also formulated within the framework of strain gradient theory. This anisotropic beam theory can be used to study size effects for any types of centrosymmetric anisotropy. To address the more practical cases of composite structures, the formulation is simplified for orthotropic and transversely isotropic materials. Finally, the analytical solutions are provided for bending of simply supported (TSD and Euler-Bernoulli) beams as well as clamped Euler-Bernoulli beams. The effect of the crystal orientation with respect to the beam geometry is investigated in these examples.
{© 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim}

MSC:

74Kxx Thin bodies, structures
74Bxx Elastic materials
74-XX Mechanics of deformable solids
Full Text: DOI

References:

[1] G.Maugin, Continuum Mechanics Through the Twentieth Century: A Concise Historical Perspective (Springer, 2013). · Zbl 1277.82007
[2] R.Mindlin, Archive for Rational Mechanics and Analysis16, 51-78 (1964). · Zbl 0119.40302
[3] B.Wang, J.Zhao, and S.Zhou, European Journal of Mechanics A/Solids29, 591-599 (2010). · Zbl 1480.74194
[4] K.Lazopoulos and A.Lazopoulos, ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik91, 875-882 (2011). · Zbl 1280.74020
[5] S.Ramezani, International Journal of Non‐Linear Mechanics47, 863-873 (2012).
[6] B.Akgöz and Ö.Civalek, International Journal of Engineering Science70, 1-14 (2013). · Zbl 1423.74452
[7] S.Mousavi and J.Paavola, Archive of Applied Mechanics84, 1135-1143 (2014). · Zbl 1341.74113
[8] B.Akgöz and Ö.Civalek, International Journal of Mechanical Sciences81, 88-94 (2014).
[9] X.Liang, S.Hu, and S.Shen, Composite Structures111, 317-323 (2014).
[10] B.Wang, M.Liu, J.Zhao, and S.Zhou, Meccanica49, 1427-1441 (2014). · Zbl 1316.74031
[11] X.‐J.Xu and Z.‐C.Deng, European Journal of Mechanics A/Solids56, 59-72 (2016). · Zbl 1406.74414
[12] R.Ansari, R.Gholami, and H.Rouhi, Composites Part B: Engineering43, 2985-2989 (2012).
[13] Y.Zheng, H.Zhang, Z.Chen, and H.Ye, Composites Part B: Engineering43, 27-32 (2012).
[14] S. T.Yaghoubi, S.Mousavi, and J.Paavola, Archive of Applied Mechanics85, 877-892 (2015). · Zbl 1341.74107
[15] R.Fernandes, S.Mousavi, and S.El‐Borgi, Acta Mechanica227, 2657-2670 (2016). · Zbl 1348.74145
[16] S.Mousavi, J.Paavola, and J.Reddy, Meccanica50, 1537-1550 (2015). · Zbl 1329.74172
[17] B.Zhang, Y.He, D.Liu, J.Lei, L.Shen, and L.Wang, Composites Part B: Engineering79, 553-580 (2015).
[18] C.Polizzotto, International Journal of Solids and Structures403, 2121-2137 (2012).
[19] I.‐M.Gitman, H.Askes, E.Kuhl, and E.Aifantis, International Journal of Solids and Structures47, 1099-1107 (2010). · Zbl 1193.74093
[20] N.Auffray, H. L.Quang, and Q.He, Journal of the Mechanics and Physics of Solids61, 1202-1223 (2013). · Zbl 1260.74012
[21] N.Auffray, J.Dirrenberger, and G.Rossi, International Journal of Solids and Structures52195-206 (2015).
[22] M.Lazar, and G.Po, Physics Letters A379, 1538-1543 (2015). · Zbl 1370.74033
[23] S.Mousavi, J.Reddy, and J.Romanoff, Acta Mechanica (2016). DOI: 10.1007/s00707-016-1689-z.
[24] A.Eringen, Nonlocal Continuum Field Theories (Springer, New York, 2002). · Zbl 1023.74003
[25] W.Bickford, Developments in Theoretical and Applied Mechanics11, pp. 137-150.
[26] M.Levinson, Journal of Sound and Vibration74, 81-87 (1981). · Zbl 0453.73058
[27] J.Reddy, Journal of Applied Mechanics51, 745-752 (1984). · Zbl 0549.73062
[28] C.Polizzotto, European Journal of Mechanics A/Solids53, 62-74 (2015). · Zbl 1406.74404
[29] W.Voigt, Lehrbuch der Kristallphysik, reprint of 1st edn. (Teubner, Leipzig, 1928). · JFM 54.0929.03
[30] C.‐L.Dym and I. H.Shames, Solid Mechanics: A Variational Approach (Springer, New York, 2013). · Zbl 1279.74001
[31] R.Ravindran, L.Fast, P.‐A.Korzhavyi, and B.Johansson, Journal of Applied Physics84, 4891-4904 (1998).
[32] P.Khodabakhshi and J.Reddy, ZAMM - Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, DOI: 10.1002/zamm.201600021 (2016).
[33] J.Niiranen, J.Kiendl, A.Niemi, and A.Reali, Computer Methods in Applied Mechanics and Engineering, DOI: 10.1016/j.cma.2016.07.008 (2016).
[34] J.Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrixes (Oxford University Press, Oxford, 1957). · Zbl 0079.22601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.