×

Allen-Cahn-Navier-Stokes-Voigt systems with moving contact lines. (English) Zbl 07766055

Summary: We consider a diffuse interface model for an incompressible binary fluid flow. The model consists of the Navier-Stokes-Voigt equations coupled with the mass-conserving Allen-Cahn equation with Flory-Huggins potential. The resulting system is subject to generalized Navier boundary conditions for the (volume averaged) fluid velocity \(\mathbf{u}\) and to a dynamic contact line boundary condition for the order parameter \(\phi\). These boundary conditions account for the moving contact line phenomenon. We establish the existence of a global weak solution which satisfies an energy inequality. A similar result is proven for the Allen-Cahn-Navier-Stokes system. In order to obtain some higher-order regularity (w.r.t. time) we propose the Voigt approximation: in this way we are able to prove the validity of the energy identity and of the strict separation property. Thanks to this property, we can show the uniqueness of quasi-strong solutions, even in dimension three. Regularization in finite time of weak solutions is also shown.

MSC:

76T06 Liquid-liquid two component flows
76D05 Navier-Stokes equations for incompressible viscous fluids
35Q35 PDEs in connection with fluid mechanics
Full Text: DOI

References:

[1] Abels, H., On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194, 463-506 (2009) · Zbl 1254.76158 · doi:10.1007/s00205-008-0160-2
[2] Abels, H.; Depner, D.; Garcke, H., Existence of weak solutions for a diffuse interface model for two-phase flows of incompressible fluids with different densities, J. Math. Fluid Mech., 15, 453-480 (2013) · Zbl 1273.76421 · doi:10.1007/s00021-012-0118-x
[3] Abels, H.; Feireisl, E., On a diffuse interface model for a two-phase flow of compressible viscous fluids, Indiana Univ. Math. J., 57, 659-698 (2008) · Zbl 1144.35041 · doi:10.1512/iumj.2008.57.3391
[4] Alberti, S.; Dormann, D., Liquid-liquid phase separation in disease, Ann. Rev. Genet., 53, 171-194 (2019) · doi:10.1146/annurev-genet-112618-043527
[5] Anderson, DM; McFadden, GB; Wheeler, AA, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30, 139-165 (1998) · Zbl 1398.76051 · doi:10.1146/annurev.fluid.30.1.139
[6] Beirão Da Veiga, H., Regularity for Stokes and generalized Stokes systems under nonhomogeneous slip-type boundary conditions, Adv. Differ. Equ., 9, 1079-1114 (2004) · Zbl 1103.35084
[7] Berselli, LC; Spirito, S., Suitable weak solutions to the 3D Navier-Stokes equations are constructed with the Voigt approximation, J. Differ. Equ., 262, 3285-3316 (2017) · Zbl 1371.35191 · doi:10.1016/j.jde.2016.11.027
[8] Boyer, F.; Fabrie, P., Mathematical Tools for the Study of the Incompressible Navier-Stokes Equations and Related Models (2013), New York: Springer-Verlag, New York · Zbl 1286.76005 · doi:10.1007/978-1-4614-5975-0
[9] Brangwynne, CP; Tompa, P.; Pappu, RV, Polymer physics of intracellular phase transitions, Nat. Phys., 11, 899-904 (2015) · doi:10.1038/nphys3532
[10] Cavaterra, C.; Gal, CG; Grasselli, M.; Miranville, A., Phase-field systems with nonlinear coupling and dynamic boundary conditions, Nonlinear Anal., 72, 2375-2399 (2010) · Zbl 1184.35053 · doi:10.1016/j.na.2009.11.002
[11] Chen, R.; Yang, X.; Zhang, H., Decoupled, energy stable scheme for hydrodynamic Allen-Cahn phase field moving contact line model, J. Comp. Math., 36, 661-681 (2018) · Zbl 1424.76022 · doi:10.4208/jcm.1703-m2016-0614
[12] Cherfils, L.; Feireisl, E.; Michálek, M.; Miranville, M.; Petcu, M.; Pražák, D., The compressible Navier-Stokes-Cahn-Hilliard equations with dynamic boundary conditions, Math. Models Methods Appl. Sci., 29, 2557-2584 (2019) · Zbl 07897045 · doi:10.1142/S0218202519500544
[13] Cherfils, L.; Miranville, A.; Zelik, S., The Cahn-Hilliard equation with logarithmic potentials, Milan J. Math., 79, 561-596 (2011) · Zbl 1250.35129 · doi:10.1007/s00032-011-0165-4
[14] Deugoué, G.; Tachim Medjo, T., Large deviation for a 2D Allen-Cahn-Navier-Stokes model under random influences, Asymptot. Anal., 123, 41-78 (2021) · Zbl 1473.35437
[15] Di Primio, A., Grasselli, M., Scarpa, L.: A stochastic Allen-Cahn-Navier-Stokes system with singular potential, arXiv:2205.10521v2 [math.AP]
[16] Dolgin, E., What lava lamps and vinaigrette can teach us about cell biology, Nat., 555, 300-302 (2018) · doi:10.1038/d41586-018-03070-2
[17] Dolgin, E., The shape-shifting blobs that shook up cell biology, Nat., 611, 24-27 (2022) · doi:10.1038/d41586-022-03477-y
[18] Elliott, C.M., Luckhaus, S.: A generalized diffusion equation for phase separation of a multi component mixture with interfacial free energy, IMA Preprint Series # 887, 1991 (1991)
[19] Flandoli, F., Dissipativity and invariant measures for stochastic Navier-Stokes equations, NoDEA Nonlinear Differ. Equ. Appl., 1, 403-423 (1994) · Zbl 0820.35108 · doi:10.1007/BF01194988
[20] Frigeri, S.; Gal, CG; Grasselli, M.; Sprekels, J., Two-dimensional nonlocal Cahn-Hilliard-Navier-Stokes systems with variable viscosity, degenerate mobility and singular potential, Nonlinearity, 32, 678-727 (2019) · Zbl 1408.35149 · doi:10.1088/1361-6544/aaedd0
[21] Frigeri, S.; Grasselli, M., Global and trajectories attractors for a nonlocal Cahn-Hilliard-Navier-Stokes system, J. Dynam. Differ. Equ., 24, 827-856 (2012) · Zbl 1261.35105 · doi:10.1007/s10884-012-9272-3
[22] Gal, CG, The role of surface diffusion in dynamic boundary conditions: Where do we stand?, Milan J. Math., 83, 237-278 (2015) · Zbl 1335.35116 · doi:10.1007/s00032-015-0242-1
[23] Gal, CG; Warma, M., Fractional in Time Semilinear Parabolic Equations and Applications, Mathematics & Applications, 84 (2020), Cham: Springer, Cham · Zbl 1468.35001
[24] Gal, CG; Giorgini, A.; Grasselli, M., The nonlocal Cahn-Hilliard equation with singular potential: well-posedness, regularity and strict separation property, J. Differ. Equ., 263, 5253-5297 (2017) · Zbl 1400.35178 · doi:10.1016/j.jde.2017.06.015
[25] Gal, CG; Grasselli, M., Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 401-436 (2010) · Zbl 1184.35055 · doi:10.1016/j.anihpc.2009.11.013
[26] Gal, CG; Grasselli, M., Longtime behavior for a model of homogeneous incompressible two-phase flows, Discrete Contin. Dyn. Syst., 28, 1-39 (2010) · Zbl 1194.35056 · doi:10.3934/dcds.2010.28.1
[27] Gal, CG; Grasselli, M.; Miranville, A., Cahn-Hilliard-Navier-Stokes systems with moving contact lines, Calc. Var. Partial. Differ. Equ., 55, 1-47 (2016) · Zbl 1372.35140 · doi:10.1007/s00526-016-0992-9
[28] Gal, CG; Grasselli, M.; Wu, H., Global weak solutions to a diffuse interface model for incompressible two-phase flows with moving contact lines and different densities, Arch. Rational Mech. Anal., 234, 1-56 (2019) · Zbl 1444.76001 · doi:10.1007/s00205-019-01383-8
[29] Gal, CG; Tachim Medjo, T., On a regularized family of models for homogeneous incompressible two-phase flows, J. Nonlinear Sci., 24, 1033-1103 (2014) · Zbl 1317.35172 · doi:10.1007/s00332-014-9211-z
[30] Gal, CG; Tachim-Medjo, T., Regularized family of models for incompressible Cahn-Hilliard two-phase flows, Nonlinear Anal. Real World Appl., 23, 94-122 (2015) · Zbl 1319.35187 · doi:10.1016/j.nonrwa.2014.11.005
[31] Gilardi, G.; Miranville, A.; Schimperna, G., On the Cahn-Hilliard equation with irregular potentials and dynamic boundary conditions, Commun. Pure Appl. Anal., 8, 881-912 (2009) · Zbl 1172.35417 · doi:10.3934/cpaa.2009.8.881
[32] Giorgini, A., Well-posedness of the two-dimensional Abels-Garcke-Grün model for two-phase flows with unmatched densities, Calc. Var. Partial. Differ. Equ., 60, 100 (2021) · Zbl 1468.35134 · doi:10.1007/s00526-021-01962-2
[33] Giorgini, A.; Grasselli, M.; Wu, H., On the mass-conserving Allen-Cahn approximation for incompressible binary fluids, J. Funct. Anal., 283, 109631 (2022) · Zbl 1504.35225 · doi:10.1016/j.jfa.2022.109631
[34] Giorgini, A.; Knopf, P., Two-phase flows with bulk-surface interaction: thermodynamically consistent Navier-Stokes-Cahn-Hilliard models with dynamic boundary conditions, J. Math. Fluid Mech., 25, 44 (2023) · Zbl 1529.35383 · doi:10.1007/s00021-023-00811-w
[35] Giorgini, A.; Miranville, A.; Temam, R., Uniqueness and regularity for the Navier-Stokes-Cahn-Hilliard system, SIAM J. Math. Anal., 51, 2535-2574 (2019) · Zbl 1419.35160 · doi:10.1137/18M1223459
[36] Grasselli, M.; Petzeltová, H.; Schimperna, G., Long time behavior of solutions to the Caginalp system with singular potential, Z. Anal. Anwend., 25, 51-72 (2006) · Zbl 1128.35021 · doi:10.4171/ZAA/1277
[37] Grasselli, M.; Poiatti, A., A phase separation model for binary fluids with hereditary viscosity, Math. Methods Appl. Sci., 45, 11031-11066 (2022) · Zbl 1534.76089 · doi:10.1002/mma.8436
[38] Grasselli, M., Poiatti, A.: Multi-component conserved Allen-Cahn equations, Interfaces Free Bound., to appear (2023)
[39] Gurtin, M.E. Polignone., D., Viñals, J.: Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6, 815-831 (1996) · Zbl 0857.76008
[40] Kuberry, P.; Larios, A.; Rebholz, LG; Wilson, NE, Numerical approximation of the Voigt regularization for incompressible Navier-Stokes and magnetohydrodynamic flows, Comput. Math. Appl., 64, 2647-2662 (2012) · Zbl 1268.76014 · doi:10.1016/j.camwa.2012.07.010
[41] Hyman, AA; Weber, CA; Jülicher, F., Liquid-liquid phase separation in biology, Annu. Rev. Cell Develop. Biol., 30, 39-58 (2014) · doi:10.1146/annurev-cellbio-100913-013325
[42] Layton, WJ; Rebholz, LG, On relaxation times in the Navier-Stokes-Voigt model, Int. J. Comput. Fluid Dyn., 27, 184-187 (2013) · Zbl 07508633 · doi:10.1080/10618562.2013.766328
[43] Levant, B.; Ramos, F.; Titi, ES, On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model, Commun. Math. Sci., 8, 277-293 (2010) · Zbl 1188.35135 · doi:10.4310/CMS.2010.v8.n1.a14
[44] Liang, H.; Liu, H.; Chai, Z.; Shi, B., Lattice Boltzmann method for contact-line motion of binary fluids with high density ratio, Phys. Rev. E, 99, 063306 (2019) · doi:10.1103/PhysRevE.99.063306
[45] Li, L.; Liu, JG, Some compactness criteria for weak solutions of time fractional PDEs, SIAM J. Math. Anal., 50, 3963-3995 (2017) · Zbl 1403.35318 · doi:10.1137/17M1145549
[46] Ma, L.; Chen, R.; Yang, X.; Zhang, H., Numerical approximations for Allen-Cahn type phase field model of two-phase incompressible fluids with moving contact lines, Commun. Comput. Phys., 21, 867-889 (2017) · Zbl 1488.65266 · doi:10.4208/cicp.OA-2016-0008
[47] Miranville, A.: The Cahn-Hilliard Equation: Recent Advances and Applications. CBMS-NSF Regional Conf. Ser. in Appl. Math., SIAM, Philadelphia (2019) · Zbl 1446.35001
[48] Miranville, A.; Zelik, S., Robust exponential attractors for Cahn-Hilliard type equations with singular potentials, Math. Methods Appl. Sci., 27, 545-582 (2004) · Zbl 1050.35113 · doi:10.1002/mma.464
[49] Moerman, PG; Hohenberg, PC; Vanden-Eijndenc, E.; Brujica, J., Emulsion patterns in the wake of a liquid-liquid phase separation front, Proc. Natl. Acad. Sci. USA, 115, 3599-3604 (2018) · doi:10.1073/pnas.1716330115
[50] Mohan, MT, On the three dimensional Kelvin-Voigt fluids: global solvability, exponential stability and exact controllability of Galerkin approximations, Evol. Equ. Control Theory, 9, 301-339 (2020) · Zbl 1436.76008 · doi:10.3934/eect.2020007
[51] Neustupa, J.; Nečasová, Š.; Kučera, P., A pressure associated with a weak solution to the Navier-Stokes equations with Navier’s boundary conditions, J. Math. Fluid Mech., 22, 20 (2020) · Zbl 1444.76041 · doi:10.1007/s00021-020-00500-y
[52] Qian, T.; Wang, X-P; Sheng, P., A variational approach to moving contact line hydrodynamics, J. Fluid Mech., 564, 333-360 (2006) · Zbl 1178.76296 · doi:10.1017/S0022112006001935
[53] Rubinstein, J.; Sternberg, P., Nonlocal reaction-diffusion equations and nucleation, IMA J. Appl. Math., 48, 249-264 (1992) · Zbl 0763.35051 · doi:10.1093/imamat/48.3.249
[54] Shibata, Y.; Shimada, R., On a generalized resolvent estimate for the Stokes system with Robin boundary condition, J. Math. Soc. Jpn., 59, 469-519 (2007) · Zbl 1127.35043 · doi:10.2969/jmsj/05920469
[55] Tachim Medjo, T., On the convergence of a stochastic 3D globally modified two-phase flow model, Discrete Contin. Dyn. Syst., 39, 395-430 (2019) · Zbl 1401.35252 · doi:10.3934/dcds.2019016
[56] Tachim Medjo, T., On the existence and uniqueness of solution to a stochastic 2D Allen-Cahn-Navier-Stokes model, Stoch. Dyn., 19, 1950007 (2019) · Zbl 1410.35295 · doi:10.1142/S0219493719500072
[57] Taylor, M.E.: Partial differential equations I, Basic theory, 2nd edition. Applied Mathematical Sciences 115. Springer, New York (2011) · Zbl 1206.35002
[58] Taylor, M.E.: Partial differential equations III, Nonlinear equations, 2nd edn. Applied Mathematical Sciences 117. Springer, New York (2011) · Zbl 1206.35004
[59] Temam, R., Infinite-Dimensional Dynamical Systems in Mechanics and Physics (1997), New York: Springer-Verlag, New York · Zbl 0871.35001 · doi:10.1007/978-1-4612-0645-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.