×

Multipliers and generalized multipliers of cyclic objects and cyclic codes. (English) Zbl 0772.94011

Summary: In [Eur. J. Comb. 8, 35-43 (1987; Zbl 0614.05049)] P. P. Pálfy answers the question: Under what conditions on \(n\) is it true that two equivalent objects in any class of cyclic combinatorial objects on \(n\) elements implies the objects are equivalent, using one of the \(\varphi(n)\) multipliers \(i\to ai\bmod n\), with \(\text{gcd}(a,n)=1\). Pálfy proved that this is true precisely when \(n=4\) or \(\text{gcd}(n,\varphi(n))=1\). For any odd prime \(p\), we prove that two equivalent objects in any class of cyclic combinatorial objects on \(n=p^ 2\) elements are equivalent using a permutation from a list of no more then \(\varphi(n)=p(p-1)\) permutations. We introduce permutations called generalized multipliers, and we show that two permutation equivalent cyclic codes of length \(p^ 2\) are equivalent by a generalized multiplier times a multiplier. We also develop properties of generalized multipliers and generalized affine maps when \(n=p^ m\), show that they map cyclic codes to cyclic codes, and show that certain of these maps are in the automorphism group of a cyclic code.

MSC:

94B15 Cyclic codes
20D15 Finite nilpotent groups, \(p\)-groups
05C25 Graphs and abstract algebra (groups, rings, fields, etc.)

Citations:

Zbl 0614.05049
Full Text: DOI

References:

[1] Ádám, A., Research problem 2-10, J. Combin. Theory, 2, 393 (1967)
[2] Alspach, B.; Parsons, T. D., Isomorphism of circulant graphs and digraphs, Discrete Math., 25, 97-108 (1979) · Zbl 0402.05038
[3] Babai, L., Isomorphism problem for a class of point-symmetric structures, Acta Math. Acad. Sci. Hungar., 29, 329-336 (1977) · Zbl 0378.05035
[4] Bays, S., Sur les systèmes cycliques de triples de Steiner différents pour \(N\) premier (ou puissance de nombre premier) de la forme \(6n + 1\), IV, Comment. Math. Helv., 3, 307-325 (1931) · Zbl 0003.10001
[5] Brand, N.; Huffman, W. C., Topological invariants of 2-designs arising from difference families, J. Combin. Theory Ser. A, 36, 253-278 (1984) · Zbl 0538.05009
[6] Brand, N., Some combinatorial isomorphism theorems, (Congr. Numer., 50 (1985)), 155-163 · Zbl 0595.05013
[7] Brand, N., Polynomial isomorphisms of combinatorial objects, Graphs Combin., 7, 7-14 (1991) · Zbl 0748.05097
[8] Brillhart, J.; Tonascia, J.; Weinberger, P., On the Fermat quotient, (Atkin, A. O.L; Birch, B. J., Computers in Number Theory (1971), Academic Press: Academic Press New York) · Zbl 0217.03203
[9] Colbourn, M. J.; Mathon, R. A., On cyclic Steiner 2-designs, Ann. Discrete Math., 7, 215-253 (1980) · Zbl 0438.05012
[10] Lambossy, P., Sur une manière de différencier les fonctions cycliques d’une forme donnée, Comment. Math. Helv., 3, 69-102 (1931) · JFM 57.1339.01
[11] Leon, J. S.; Masley, J. M.; Pless, V., Duadic codes, IEEE Trans. Inform. Theory, IT-30, 709-714 (1984) · Zbl 0575.94013
[12] Newhart, D. W., Inequivalent cyclic codes of prime length, IEEE Trans. Inform. Theory, IT-32, 703-705 (1986) · Zbl 0619.94014
[13] Pálfy, P. P., Isomorphism problem for relational structures with a cyclic automorphism, Eurpean J. Combin. Theory, 8, 35-43 (1987) · Zbl 0614.05049
[14] K. Phelps; K. Phelps
[15] Pless, V., \(Q\)-codes, J. Combin. Theory Ser. A, 43, 258-276 (1986) · Zbl 0679.94014
[16] Pless, V.; Masley, J.; Leon, J. S., On weights in duadic codes, J. Combin. Theory Ser. A, 44, 6-21 (1987) · Zbl 0616.94011
[17] Pless, V., Introduction to the Theory of Error Correcting Codes (1989), Wiley: Wiley New York · Zbl 0698.94007
[18] Smid, M. H.M, On Duadic Codes, (Master’s thesis (May 1986), Eindhoven University of Technology) · Zbl 0629.94016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.