×

Global dimension of rings with Krull dimension. (English) Zbl 0771.16005

The main result of this paper is that if \(R\) is any semiprime ring with left Krull dimension \(\alpha\), then the left global homological dimension of \(R\) equals the supremum of the projective dimensions of the \(\beta\)- critical cyclic left \(R\)-modules for \(\beta < \alpha\). The same conclusion is also obtained for full upper triangular matrix rings over domains, and for certain formal triangular matrix rings; further, analogs for rings with Gabriel dimension are given. These results continue a line developed by M. L. Teply, who proved the analogous formula for the weak global dimension of any right coherent ring with left Krull dimension [Bull. Aust. Math. Soc. 39, 215-223 (1989; Zbl 0654.16018)], motivated by work on the problem of whether the global dimension of any noetherian ring equals the supremum of the projective dimensions of its simple modules. A discussion of this problem can be found in the book by the reviewer and R. B. Warfield [An introduction to noncommutative Noetherian rings (Cambridge Univ. Press, 1989; Zbl 0679.16001), p. 287].

MSC:

16E10 Homological dimension in associative algebras
16P60 Chain conditions on annihilators and summands: Goldie-type conditions
16N60 Prime and semiprime associative rings
Full Text: DOI

References:

[1] Bhatwadekar S.M., On the Global Dimension of some Filtered Algebras 209 pp 65– (1970) · Zbl 0332.16012
[2] DOI: 10.1090/S0002-9904-1970-12370-9 · Zbl 0213.04501 · doi:10.1090/S0002-9904-1970-12370-9
[3] Fields K. L, Pacific J. Math 32 pp 345– (1970)
[4] DOI: 10.1090/S0002-9947-1975-0382359-7 · doi:10.1090/S0002-9947-1975-0382359-7
[5] DOI: 10.1515/form.1989.1.185 · Zbl 0656.16001 · doi:10.1515/form.1989.1.185
[6] Gordon R., KruJI Dimension
[7] DOI: 10.1016/0021-8693(74)90081-7 · Zbl 0285.16018 · doi:10.1016/0021-8693(74)90081-7
[8] Northcott D.G., An Introduction to Homological Algebra · Zbl 0116.01401 · doi:10.2307/3614153
[9] DOI: 10.1080/00927878708823527 · Zbl 0628.16010 · doi:10.1080/00927878708823527
[10] DOI: 10.1016/0021-8693(72)90104-4 · Zbl 0239.16003 · doi:10.1016/0021-8693(72)90104-4
[11] Rotman, J.J. 1979. ”An Introduction to Homological Algebra”. New York: Academic Press. · Zbl 0441.18018
[12] DOI: 10.1017/S0305004100059089 · Zbl 0478.17006 · doi:10.1017/S0305004100059089
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.