×

The \(L^ 2\) structure of moduli spaces of Einstein metrics on 4- manifolds. (English) Zbl 0768.53021

Let \(M\) be a \(C^ \infty\) compact, oriented manifold and \(M_ 1\) the space of \(C^ \infty\) Riemannian metrics of volume 1 on \(M\). The group \(D = \text{Diff}(M)\) acts on \(M_ 1\) by pullback, and the space \(M_ 1/D\) is the space of Riemannian structures on \(M\) – the moduli space of Riemannian metrics on \(M\). An Einstein metric \(g \in M_ 1\) is a metric such that \(\text{Ric}(g) = {\lambda\over n}g\), where \(n = \dim M\), \(\lambda\) denotes the scalar curvature of \(g\), and \(\text{Ric} =\) Ricci curvature. The subset \({\mathcal E} \subset M_ 1/D\) (endowed with the induced topology) is the moduli space of Einstein metrics of volume 1 on \(M\). Let \({\mathcal E}^ \mu\) (\(\mu = -,\circ,+)\) be the space of Einstein metrics with constant scalar curvature respectively negative zero, or positive.
Continuing his research published in [Res. Announ., Bull. Am. Math. Soc. 21, 163-167 (1983)] the author studies the global behaviour of the spaces \({\mathcal E}^ \mu \subset {\mathcal E}\) with respect to an extrinsic \(L^ 2\)- metric on \({\mathcal E}: \text{dis}_{L^ 2}(g_ 0,g_ 1) = \inf\{L(\gamma)\}\), \(g_ 0,g_ 1 \in {\mathcal E}^ \mu\), \(\gamma\) is an arbitrary curve in \(M_ 1/D\) with endpoints \(g_ 0\) and \(g_ 1\). Let \(\overline{D}\) denote the completion of \(D\) in the Lipschitz topology, acting on the space \(S^ 2(M)\) of symmetric bilinear forms on \(M\) with coefficients in \(L^ 2\); let \({\mathcal E}^ \mu_ s\) be the space of orbifold singular \(\lambda\)-Einstein metrics on \(M\), \(\mu = \text{sgn}(\lambda)\). The author proves several important results. Example: Let \(M\) be a compact, oriented 4-manifold. 1) The closure \(\overline{{\mathcal E}^ \mu}\) of \({\mathcal E}^ +\) in the extrinsic \(L^ 2\)-metric is contained in \({\mathcal E}^ 0 \cup {\mathcal E}^ 0_ s\), the space of Einstein metrics, regular and orbifold singular, of non-negative scalar curvature. For \(\lambda_ 0 > 0\), the space \(\overline{{\mathcal E}^{\lambda_ 0}}\) is a compact Hausdorff subspace of \(S^ 2(M)/\overline{D}\). 2) The closure \(\overline{{\mathcal E}^ 0}\) of \({\mathcal E}^ 0\) in the extrinsic \(L^ 2\) metric is a complete, generally non- compact Hausdorff subspace of \(S^ 2(M)/\overline{D}\), consisting of regular and orbifold singular Einstein metrics on \(M\). The space \(\overline{{\mathcal E}^ 0}\) is a locally compact subspace of \(S^ 2(M)/\overline{D}\). Finally, analogous problems are studied on the moduli of \(K3\)-surfaces. The methods are inspired by Differential geometry, Potential theory and Functional analysis.

MSC:

53C25 Special Riemannian manifolds (Einstein, Sasakian, etc.)
58D17 Manifolds of metrics (especially Riemannian)

References:

[1] M. Anderson, Ricci curvature bounds and Einstein metrics on compact manifolds, Jour. Amer. Math. Soc. 2 (1989), 455–490. · Zbl 0694.53045 · doi:10.1090/S0894-0347-1989-0999661-1
[2] M. Anderson, Moduli spaces of Einstein metrics on 4-manifolds, Research Announ., Bull. Amer. Math. Soc. 21, No.2 (October 1989), 163–167. · Zbl 0697.58057 · doi:10.1090/S0273-0979-1989-15828-X
[3] M. Anderson, J. Cheeger, Diffeomorphism finiteness for manifolds with Ricci curvature andL n/2 norm of curvature bounded, Geometric and Functional Analysis 1, No. 3, (1991), 231–252. · Zbl 0764.53026 · doi:10.1007/BF01896203
[4] S. Bando, Bubbling out of Einstein manifolds, Tohoku Math. Jour. 42, No. 2 (1990), 205–216; and 42, No. 4, 587–588. · Zbl 0719.53025 · doi:10.2748/tmj/1178227654
[5] S. Bando, A. Kasue, H. Nakajima, On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth, Invent. Math. 97 (1989), 313–349. · Zbl 0682.53045 · doi:10.1007/BF01389045
[6] W. Barth, C. Peters, A. Van de Ven, Compact Complex Surfaces, Ergebnisse der Math. 3. Folge, Band 4, Springer Verlag, New York (1984).
[7] A. Beauville, et al., Geometrie des surfaces K3: Modules et Periodes, Asterisque 126, Soc. Math. France (1983). · Zbl 0528.14016
[8] P. Berard, G. Besson, S. Gallot, Sur une inequalite isoperimetrique qui generalise celle de P. Levy-Gromov, Inventiones Math. 80 (1985), 295–308. · Zbl 0571.53027 · doi:10.1007/BF01388608
[9] M. Berger, Une borne inferieure pour le volume d’une variete Riemannienne en fonction du rayon d’injectivite, Ann. Inst. Fourier, Grenoble, 30 (1980), 259–265. · Zbl 0421.53028
[10] L. Bers, Finite dimensional Teichmuller spaces and generalizations, Proc. Symp. Pure Math. 39:I (1983), 115–156.
[11] A. Besse, Geometrie Riemannienne en Dimension 4, Cedic-Fernand Nathan Paris (1981).
[12] A. Besse, Einstein Manifolds, Ergebnisse der Math., 3. Folge, Band 10, Springer Verlag, New York (1987).
[13] D. Burns, M. Rapaport, On the Torelli problem for Kãhlerian K3 surfaces, Ann. Sci. Ecole Norm. Sup. IV, Serie 8 (1975), 235–274. · Zbl 0324.14008
[14] D. Burns, J. Wahl, Local contributions to global deformation of surfaces, Invent. Math. 26 (1974), 57–88. · Zbl 0288.14010 · doi:10.1007/BF01406846
[15] J. Cheeger, M. Gromov, Collapsing Riemannian manifolds while keeping their curvature bounded, II (II), Jour. Diff. Geom. 23 (1986), 309–346; and 32 (1990), 269–298. · Zbl 0606.53028
[16] J. Cheeger, M. Gromov, Chopping Riemannian manifolds, to appear in Do-Carmo Volume, Pitman Press. · Zbl 0722.53045
[17] C. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm. Sup. IV, Serie 13 (1980), 419–435. · Zbl 0465.53032
[18] D. Ebin, The manifold of Riemannian metrics, Proc. Symp. Pure Math. 15, Amer. Math. Soc. (1970), 11–40. · Zbl 0205.53702
[19] T. Eguchi, P. Gilkey, A. Hanson, Gravitation, Gauge Theories and Differential Geometry, Physical Reports 66 (1980), 213–393. · doi:10.1016/0370-1573(80)90130-1
[20] D. Freed, D. Groisser, The basic geometry of the manifold of Riemannian metrics and of its quotient by the diffeomorphism group, Mich. Math. Jour. 36 (1989), 323–344. · Zbl 0694.58008 · doi:10.1307/mmj/1029004004
[21] H. Federer, Geometric Measure Theory, Springer Verlag, New York (1969). · Zbl 0176.00801
[22] A. Fujiki, Kählerian normal complex spaces, Tohoku Math. Jour. 2nd Series 35 (1983), 101–118. · Zbl 0562.32015
[23] G. Gibbons, S. Hawking, Gravitational multi-instantons, Phys. Lett. B 78 (1978), 430–432. · doi:10.1016/0370-2693(78)90478-1
[24] M. Gromov, Structures Metriques pour les Varietes Riemanniennes, Cedic-Fernand Nathan, (1981).
[25] M. Gromov, Paul Levy’s isoperimetric inequality, Preprint, IHES (1979).
[26] N. Hitchin, Polygons and gravitons, Math. Proc. Camb. Phil. Soc. 85 (1979), 465–476. · Zbl 0405.53016 · doi:10.1017/S0305004100055924
[27] R. Kobayashi, Einstein-KählerV-metrics on open SatakeV-surfaces with isolated quotient singularities, Math. Ann. 272 (1985), 385–398. · Zbl 0556.14019 · doi:10.1007/BF01455566
[28] R. Kobayashi, A. Todorov, Polarized period map for generalized K3 surfaces and the moduli of Einstein metrics, Tohoku Math. Jour. 39 (1987), 341–363. · Zbl 0646.14029 · doi:10.2748/tmj/1178228282
[29] N. Koiso, Rigidity and infinitesimal deformability of Einstein metrics, Osaka Jour. Math. 17 (1982), 643–668. · Zbl 0495.53043
[30] P. Kronheimer, The construction of ALE spaces as hyperkähler quotients, Jour. Diff. Geom. 29 (1989), 465–483. · Zbl 0671.53045
[31] D. Morrison, Some remarks on the moduli of K3 surfaces, Classification of Algebraic and Analytic Manifolds, Progress in Math., Birkhäuser Verlag 39 (1983), 303–332.
[32] H. Nakajima, Hausdorff convergence of Einstein 4-manifolds, J. Fac. Sci. Univ. Tokyo 35 (1988), 411–424. · Zbl 0655.53037
[33] W. Rudin, Real and Complex Analysis, McGraw Hill, New York, (1977). · Zbl 0925.00003
[34] W. Thurston, The Geometry and Topology of 3-manifolds, (Preprint, Princeton). · Zbl 0483.57007
[35] G. Tian, Smoothness of the universal deformation space of compact Calabi-Yau manifolds and its Petersson-Weil metric, Mathematical Aspects of String Theory (ed. S.-T. Yau), World Scientific, Singapore (1987), 629–646. · Zbl 0696.53040
[36] G. Tian, On Calabi’s conjecture for complex surfaces with positive first Chern class, Invent. Math. 101 (1990), 101–172. · Zbl 0716.32019 · doi:10.1007/BF01231499
[37] G. Tian, S.-T. Yau, Kähler-Einstein metrics on complex surfaces withc 1>0, Comm. Math. Phys. 42 (1987), 175–203. · Zbl 0631.53052 · doi:10.1007/BF01217685
[38] A. Todorov, Applications of the Kähler-Einstein-Calabi-Yau metric to moduli of K3 surfaces, Inventiones Math. 61 (1980), 251–265. · Zbl 0472.14006 · doi:10.1007/BF01390067
[39] H. Tsuji, Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type, Math. Annalen 281 (1988), 123–133. · Zbl 0631.53051 · doi:10.1007/BF01449219
[40] H. Wu, On manifolds of partially positive curvature, Indiana Univ. Math. Jour. 36, No.3 (1987), 525–548. · Zbl 0639.53050 · doi:10.1512/iumj.1987.36.36029
[41] S.-T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampere equation, Comm. Pure and Appl. Math. 31 (1978), 339–441. · Zbl 0369.53059 · doi:10.1002/cpa.3160310304
[42] S.-T. Yau, Survey lecture, Seminar on Differential Geometry, Ann. of Math. Studies 102 (1982).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.