×

Geometric quantization of \(N=2\) superstring. (English) Zbl 0766.58025

Summary: A nonperturbative geometric formulation of the \(N=2\) Neveu-Schwarz superstring theory which has been recently interpreted by H. Ooguri and C. Vafa [Mod. Phys. Lett. A 5, 1389-1398 (1990)] as a consistent quantum theory of self-dual gravity in four dimensions, is constructed. It is shown that the natural complex structure over the loop superspace \(\Omega\mathbb{M}^{d| d}\) associated to the \(N=2\) Neveu- Schwarz fermionic string, is invariant under symmetry group \(OSp(2\mid 2)\subset\text{Superdiff} S^{1/2}\). Moreover, it is proved that there is a unique Lorentz and \(OSp(2\mid 2)\) invariant complex structure on \(\Omega\mathbb{M}^{d\mid d}\). This result implies that the superspace of all admissible complex structures over \(\Omega\mathbb{M}^{d\mid d}\) is isomorphic to the homogeneous Kähler supermanifold \(\text{Superdiff} S^{1\mid 2}/OSp(2\mid 2)\). The Ricci curvature of \(\text{Superdiff} S^{1\mid 2}/OSp(2\mid 2)\) is calculated. Applying the method of geometric quantization to the \(N=2\) Neveu-Schwarz superstring theory along the lines suggested by M. J. Bowick and S. G. Rajeev [Nucl. Phys. B 361, 469 (1991)], a representation is constructed of nonperturbative \(N=2\) superstring vacua in terms of antiholomorphic and horizontal sections of a certain vector bundle over \(\text{Superdiff} S^{1\mid 2}/OSp(2\mid 2)\); it is proved that such sections exist only in complex dimension \(d=2\).

MSC:

53D50 Geometric quantization
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
58A50 Supermanifolds and graded manifolds
81S10 Geometry and quantization, symplectic methods
58Z05 Applications of global analysis to the sciences
83E30 String and superstring theories in gravitational theory
53C80 Applications of global differential geometry to the sciences
Full Text: DOI

References:

[1] DOI: 10.1016/0550-3213(76)90483-1 · doi:10.1016/0550-3213(76)90483-1
[2] DOI: 10.1016/0550-3213(76)90556-3 · doi:10.1016/0550-3213(76)90556-3
[3] DOI: 10.1016/0370-2693(87)91326-8 · doi:10.1016/0370-2693(87)91326-8
[4] DOI: 10.1142/S021773239000158X · Zbl 1020.81792 · doi:10.1142/S021773239000158X
[5] DOI: 10.1016/0550-3213(91)90270-8 · doi:10.1016/0550-3213(91)90270-8
[6] DOI: 10.1007/BF00762011 · Zbl 0354.53025 · doi:10.1007/BF00762011
[7] DOI: 10.1103/PhysRevLett.58.535 · doi:10.1103/PhysRevLett.58.535
[8] DOI: 10.1016/0550-3213(87)90076-9 · doi:10.1016/0550-3213(87)90076-9
[9] Merkulov S. A., JETP Lett. 55 (3) pp 153– (1992)
[10] DOI: 10.1007/BF02099878 · Zbl 0705.32013 · doi:10.1007/BF02099878
[11] DOI: 10.1007/BF02098049 · Zbl 0727.30037 · doi:10.1007/BF02098049
[12] DOI: 10.1016/0550-3213(87)90597-9 · doi:10.1016/0550-3213(87)90597-9
[13] DOI: 10.1016/0370-2693(87)91460-2 · doi:10.1016/0370-2693(87)91460-2
[14] Merkulov S. A., JETP Lett. 55 (3) pp 156– (1992)
[15] DOI: 10.1112/jlms/s2-26.3.557 · Zbl 0508.58011 · doi:10.1112/jlms/s2-26.3.557
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.