×

Nonlinear dynamics in a laser with a negative delayed feedback. (English) Zbl 0765.34056

The paper deals with the theoretical investigation of laser dynamics with a nonlinear element whose losses depend on the intensity of radiation passing through the feedback loop. From the mathematical point of view, the subject of the authors’ consideration is the system of equations (1) \(\dot u=v[k(t)-1-\alpha u(t-\tau)]u(t)+vu_ 0\), \(\dot k=k_ 0-k(t)- u(t)k(t)\), i.e. a differential equation with a delayed argument. Here the running time \(t\) and the delay time \(\tau\) are normalized to some relaxation time; \(u\) is the ratio of the radiation intensity to the saturation intensity, \(k(k_ 0)\) is the ratio of the gain factor (unsaturated) to the loss factor independent of the radiation intensity; \(v=T_ a/T_ c\) is the ratio of the relaxation time of the gain \(T_ a\) to the damping time of radiation in the cavity \(T_ c\), \(\alpha\) is the parameter characterizing the feedback depth. The phase space of the system (1) is the direct product of the Banach space \(C_{[-\tau,0]}\) of continuous functions on \([-\tau,0]\) into \(\mathbb{R}^ 1\). The authors introduce the subset \(S_ 0\in C_{[-\tau,0]}\) of functions having the properties (i) \(\psi(0)=1\); (ii) \(0\leq\psi(s)\leq 1\), \(s\in[-\tau,0]\); (iii) \(\int^ 0_{-\tau}\psi(s)ds\leq[k_ 0v(1-e^{-\tau})]^{-1}\), and define the set of initial conditions as \(S(h)=S_ 0\times k_ 0h\), \(h\in(0,1)\), i.e. they consider solutions of (1) with the initial conditions \(u(s)=\psi(s)\in S_ 0\), \(s\in[-\tau,0]\) and \(k(0)=k_ 0h\). Then the system (1) is solved by the method of sequential integration steps, and different classes of solutions are considered under additional assumptions on the parameters \(k_ 0\) and \(u_ 0\). Parameter domains with different order of instability of the system steady state are determined. Also the transition to dynamic chaos by a sequence of period- dubling bifurcations is numerically investigated.
Reviewer: I.E.Tralle (Minsk)

MSC:

34K20 Stability theory of functional-differential equations
34K25 Asymptotic theory of functional-differential equations
34C23 Bifurcation theory for ordinary differential equations
78A60 Lasers, masers, optical bistability, nonlinear optics
34D45 Attractors of solutions to ordinary differential equations
70K50 Bifurcations and instability for nonlinear problems in mechanics
Full Text: DOI

References:

[1] Rozanov, N. N., Izv. AN SSSR Ser. Fiz., 46, 1886 (1982)
[2] Gao, J. Y.; Narducci, L. M.; Sadihy, H.; Sguiccarini, M.; Yuan, J. M., Phys. Rev. A, 38, 901 (1984)
[3] Ikeda, K.; Matsumoto, K., Physica D, 29, 223 (1987) · Zbl 0626.58014
[4] Mandel, P.; Kapral, R., Opt. Comm., 47, 151 (1983)
[5] Miller, R.; Glas, P., J. Opt. Soc. Am. B, 2, 184 (1985)
[6] Kotomtseva, L. A.; Loiko, N. A.; Samson, A. M., Phys. Lett. A, 110, 339 (1985)
[7] Loiko, N. A., Kvant. Elektr. (USSR), 17, 428 (1989)
[8] Marshall, F. R.; Roberts, D. R., (Proc. IRE, 50 (1962)), 2108
[9] Statz, H.; Demars, G. A.; Wilson, D. T.; Tang, C. L., Appl. Phys., 36, 1510 (1965)
[10] Samson, A. M.; Rybakov, V. A., Zh. Prokl. Spektr., 8, 949 (1968)
[11] (Samson, A. M., Quantum Electronics and Laser Spectroscopy (1974), Nauka i Tekhnika: Nauka i Tekhnika Minsk), 41
[12] Grigorieva, E. V.; Loiko, N. A.; Samson, A. M., Preprint No. 548 (1989), Institute of Physics, BSSR Academy of Sciences: Institute of Physics, BSSR Academy of Sciences Minsk
[13] Grigorieva, E. V.; Kashchenko, S. A.; Loiko, N. A.; Samson, A. M., Preprint No. 556 (1989), Institute of Physics, BSSR Academy of Sciences: Institute of Physics, BSSR Academy of Sciences Minsk
[14] Elsgolts, L. E.; Norkin, S. B., An Introduction to the Theory of Differential Equations with a Deviating Argument (1971), Nauka: Nauka Moscow · Zbl 0224.34053
[15] Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H., Theory and Applications of Hopf Bifurcation (1981), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0474.34002
[16] Kashchenko, S. A., Preprint of the Institute of Mathematics, Acad. Sci. of the Ukranian SSR, No. 84, 54, 59 (1984)
[17] Kashchenko, S. A., Dokl. Akad. Nauk SSSR, 292, 327 (1987)
[18] Vasilieva, A. B.; Butuzov, V. F., Asymptotic Decomposition of Singularly Perturbed Equations, ((1973), Nauka: Nauka Moscow), 28-31 · Zbl 0364.34028
[19] Edwards, R. E., Functional Analysis (1965), Rinehart and Winsten, Holt · Zbl 0182.16101
[20] Dmitriev, A. S.; Kashchenko, S. A., Radiotekhn. Elektron., 2569 (1989)
[21] Sharkovskii, A. I.; Maistrenko, Yu. L.; Romanenko, E. Yu., Difference Equations and their Application, ((1986), Navukova Dumka: Navukova Dumka Kiev), 279 · Zbl 0669.39001
[22] Mitropolskii, Yu. A., The Method of Averaging in Nonlinear Mechanics (1986), Navukova Dumka: Navukova Dumka Kiev
[23] Krivoshchekov, G. V.; Makukha, V. K.; Tarasov, V. M., Kvant. Elektr. (USSR), 2, 711 (1975)
[24] Farmer, D., Physica D, 4, 366 (1982) · Zbl 1194.37052
[25] Grassberder, P.; Procaccia, I., Physica D, 9, 189 (1983) · Zbl 0593.58024
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.