×

Equivalence of Gibbs and equilibrium states for homeomorphisms satisfying expansiveness and specification. (English) Zbl 0763.54028

Let \(M\) be a compact metrizable space and \(f:M\to M\) a homeomorphism. \(f\) is expansive with expansive constant \(\varepsilon>0\) if \(d(f^ kx,f^ ky)\leq\varepsilon\) for all \(k\in Z\) and \(x,y\in M\), where \(d\) is an arbitrary metric for the topology on \(M\). \(f\) satisfies the specification condition if for every \(\varepsilon>0\) there is integer \(p(\varepsilon)\geq 0\) such that, given \(l\) points \(x_ 1,\dots,x_ l\in M\) and integers \(n_ 1,\dots,n_ l>0\), \(p_ 1,\dots,p_ l>p(\varepsilon)\), there exists \(z\in M\) such that \[ d(f^{m(j-1)+i}z,\;f^ ix_ j)\leq\varepsilon \] for \(i=0,\dots,n_ j-1\); \(j=1,\dots,l,\) where \(m(0)=0\) and \(m(j)=n_ 1+p_ 1+\dots+n_ j+p_ j\).
Further let \(A:M\to R\) be a function such that \(\sum^{n- 1}_{k=0}[A(f^ kx)-A(f^ ky)]\leq K(\varepsilon)<\infty\) whenever \(n\geq 1\), and \(d(f^ kx,f^ ky)<\varepsilon\) for \(k=0,\dots,n-1\). Let \(\rho\) be the equilibrium state for \(A\). The authors show that \(\rho\) is also the unique Gibbs state for \(A\) at the assumption \(K(\delta)\to 0\) when \(\delta\to 0\) and \(f\) is expansive, satisfying the specification condition. The authors also define the quasi-Gibbs states and show that \(\rho\) is the unique \(f\)-invariant quasi-Gibbs state for \(A\).

MSC:

54H20 Topological dynamics (MSC2010)
37-XX Dynamical systems and ergodic theory
Full Text: DOI

References:

[1] Baladi, V.: Gibbs states and equilibrium states for finitely presented dynamical systems. J. Statist. Phys.62, 239–256 (1991) · Zbl 0746.58024 · doi:10.1007/BF01020868
[2] Bowen, R.: Some systems with unique equilibrium states. Math. Systems Theory8, 193–202 (1974) · Zbl 0299.54031 · doi:10.1007/BF01762666
[3] Capocaccia, D.: A definition of Gibbs state for a compact set withZ v action. Commun. Math. Phys.48, 85–88 (1976) · doi:10.1007/BF01609413
[4] Dobrushin, R.L.: The description of a random field by means of conditional probabilities and conditions of its regularity. Teorija Verojatn. i ee Prim.13, 201–229 (1968). English translation: Theory Prob. Appl.13, 197–224 (1968) · Zbl 0184.40403
[5] Dobrushin, R.L.: Gibbsian random fields for lattice systems with pairwise interactions. Funkts. Analiz i ego Pril2 (4), 31–43 (1968). English translation: Funct. Anal. Appl.2, 292–301 (1968)
[6] Fried, D.: Finitely presented dynamical systems. Ergodic Theory Dyn. Syst.7, 489–507 (1987) · Zbl 0652.54028 · doi:10.1017/S014338570000417X
[7] Haydn, N.T.A.: On Gibbs and equilibrium states. Ergodic Theory Dyn. Syst.7, 119–132 (1987) · Zbl 0601.58046 · doi:10.1017/S0143385700003849
[8] Lanford, O., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys.13, 194–215 (1969) · doi:10.1007/BF01645487
[9] Ruelle, D.: Statistical mechanics on a compact set withZ v-action satisfying expansiveness and specification. Bull. Am. Math. Soc.78, 988–991 (1972); Trans. Am. Math. Soc.185, 237–251 (1973) · Zbl 0255.28015 · doi:10.1090/S0002-9904-1972-13078-7
[10] Ruelle, D.: Thermodynamic Formalism. Encyclopedia of Math. and its Appl., vol. 5, Reading, Mass.: Addison-Wesley 1978 · Zbl 0401.28016
[11] Smale, S.: Differentiable dynamical systems. Bull. Am. Math. Soc.73, 747–817 (1967) · Zbl 0202.55202 · doi:10.1090/S0002-9904-1967-11798-1
[12] Walters, P.: A variational principle for the pressure of continuous transformations. Am. J. Math.97, 937–971 (1975) · Zbl 0318.28007 · doi:10.2307/2373682
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.