×

Nilpotent orbits, normality, and Hamiltonian group actions. (English) Zbl 0762.22008

Some new results concerning the symplectic and algebraic geometry of nilpotent orbits of a complex semisimple Lie group are presented. Let \(G\) be a simply connected complex semisimple Lie group and \({\mathfrak g}\) the Lie algebra of \(G\). Let \(e\in{\mathfrak g}\) be nilpotent and let \(O\) be the adjoint orbit of \(e\) and \(\nu: M\to O\) a \(G\)-covering. The ring \(R=R(M)\) of regular functions on \(M\) carries a \(G\)-invariant grading \(R=\oplus_{k\geq 0}R_ k\), \(k\in\mathbb{Z}\). If \(R[{\mathfrak g}]\) is the copy of \({\mathfrak g}\) in \(R\), then \(R[{\mathfrak g}]\subset R[2]\). It is proven that \({\mathfrak g}'=R[2]\) is a semisimple Lie algebra and is simple if \({\mathfrak g}\) is simple. The complete list of all pairs \(({\mathfrak g},{\mathfrak g}')\) for all simple \({\mathfrak g}\)’s is given. Some further results concerning the structure of the ring \(R\) are presented. An application to the symmetry problem of flag varieties is given.

MSC:

22E46 Semisimple Lie groups and their representations
37J99 Dynamical aspects of finite-dimensional Hamiltonian and Lagrangian systems
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
14L30 Group actions on varieties or schemes (quotients)
17B20 Simple, semisimple, reductive (super)algebras

References:

[1] M. Demazure, Automorphismes et déformations des variétés de Borel, Invent. Math. 39 (1977), no. 2, 179 – 186. · Zbl 0406.14030 · doi:10.1007/BF01390108
[2] Bertram Kostant, The vanishing of scalar curvature and the minimal representation of \?\?(4,4), Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 85 – 124. · Zbl 0739.22012
[3] Hanspeter Kraft and Claudio Procesi, On the geometry of conjugacy classes in classical groups, Comment. Math. Helv. 57 (1982), no. 4, 539 – 602. · Zbl 0511.14023 · doi:10.1007/BF02565876
[4] T. Levasseur and S. P. Smith, Primitive ideals and nilpotent orbits in type \?\(_{2}\), J. Algebra 114 (1988), no. 1, 81 – 105. · Zbl 0644.17005 · doi:10.1016/0021-8693(88)90214-1
[5] William M. McGovern, Dixmier algebras and the orbit method, Operator algebras, unitary representations, enveloping algebras, and invariant theory (Paris, 1989) Progr. Math., vol. 92, Birkhäuser Boston, Boston, MA, 1990, pp. 397 – 416. · Zbl 0854.17011
[6] David A. Vogan Jr., The orbit method and primitive ideals for semisimple Lie algebras, Lie algebras and related topics (Windsor, Ont., 1984) CMS Conf. Proc., vol. 5, Amer. Math. Soc., Providence, RI, 1986, pp. 281 – 316.
[7] David A. Vogan Jr., Noncommutative algebras and unitary representations, The mathematical heritage of Hermann Weyl (Durham, NC, 1987) Proc. Sympos. Pure Math., vol. 48, Amer. Math. Soc., Providence, RI, 1988, pp. 35 – 60. · doi:10.1090/pspum/048/974331
[8] Aboubeker Zahid, Les endomorphismes \?-finis des modules de Whittaker, Bull. Soc. Math. France 117 (1989), no. 4, 451 – 477 (French, with English summary). · Zbl 0737.17005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.