×

Fake Lie groups with maximal tori. IV. (English) Zbl 0761.55013

This paper is a continuation of a series of papers on fake Lie groups of L. Smith and the author [ibid. 288, 637-661, 663-673 (1990; Zbl 0697.55006 and Zbl 0697.55007); ibid. 290, 629-642 (1991; Zbl 0741.55004)]. A fake Lie group of type \(G\), \(G\) a compact connected Lie group, is a finite loop space \(X\) such that the classifying space \(BX\) has the same genus as \(BG\); i.e., both spaces are \(p\)-local equivalent for any prime \(p\). For such spaces there exists a notion of a maximal torus. A map \(BT_ X\to BX\), \(T_ X\) a torus, is a maximal torus of \(X\) if the homotopy fiber is equivalent to a finite CW-complex and if \(\text{rank}(T_ X)=\text{rank}(X)\).
The main result classifies the fake Lie groups with maximal torus. A fake Lie group \(X\) of type \(G\) has a maximal torus iff there exists a compact connected Lie group \(H\) such that \(BX\) and \(BH\) are homotopy-equivalent. If \(G\) is simply connected or if \(G\) is simple, then \(H=G\), i.e., \(BX\) and \(BG\) are equivalent.
Reviewer: D.Notbohm

MSC:

55R35 Classifying spaces of groups and \(H\)-spaces in algebraic topology
55P15 Classification of homotopy type
55R15 Classification of fiber spaces or bundles in algebraic topology

References:

[1] Adams, J.F., Mahmud, Z.: Maps between classifying spaces. Invent. Math.35, 1–41 (1976) · doi:10.1007/BF01390132
[2] Baum, P.F., Browder, W.: The cohomology of quotients of classical groups. Topology3, 305–336 (1965) · Zbl 0152.22101 · doi:10.1016/0040-9383(65)90001-7
[3] Bousfield, A., Kan, D.: Homotopy limits, completion, and localisations. (Lect. Notes Math., vol. 304) Berlin Heidelberg New York: Springer 1972 · Zbl 0259.55004
[4] Curtis, C.W., Reiner, I.: Representation theory of finite groups and associative algebras. New York London: Wiley 1991 · Zbl 1093.20003
[5] Friedlander, E.M.: Exceptional isogenies and the classifying spaces of simple Lie groups Ann. Math.101, 510–520 (1975) · Zbl 0308.55016 · doi:10.2307/1970938
[6] Friedlander, E.M.: Maps between localised homogeneous spaces. Topology16, 205–217 (1977) · Zbl 0364.57015 · doi:10.1016/0040-9383(77)90001-5
[7] Glover, H., Mislin, G.: On the genus of generalized flag manifold. Enseign. Math.27, 211–219 (1981) · Zbl 0498.55004
[8] Jackowski, S., McClure, J., Oliver, R.: Self homotopy equivalences of BG. Preprint · Zbl 0758.55004
[9] Møller, J.M.: The normalizer of the Weyl group. Preprint · Zbl 0761.55006
[10] Notbohm, D.: Maps between classifying spaces and applications. Math. Gott. Heft20 (1991) · Zbl 0731.55011
[11] Notbohm, D.: Homotopy uniqueness of classifying spaces at primes dividing the order of the Weyl group. Habilitationsschrift, Göttingen 1991 · Zbl 0820.57020
[12] Notbohm, D., Smith, L.: Fake Lie groups and maximal tori I, II, III. Math. Ann.288, 637–661; 663–673 (1991); Math. Ann.290, 629–642 (1991) · Zbl 0697.55006 · doi:10.1007/BF01444556
[13] Papadima, S.: Rigidity properties of compact Lie groups modulo maximal tori. Math. Ann.275, 637–652 (1986) · doi:10.1007/BF01459142
[14] Wilkerson, C.W.: Self maps of classifying spaces. Localisation in group theory and homotopy theory. (Lect. Notes Math. vol. 418, 150–156) Berlin Heidelberg New York: Springer 1974
[15] Tits, J.: Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen. (Lect. Notes Math. vol. 40) Berlin Heidelberg New York: Springer 1967 · Zbl 0166.29703
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.