×

Heat-transfer enhancement due to slender recirculation and chaotic transport between counter-rotating eccentric cylinders. (English) Zbl 0759.76075

The authors have investigated the effects of a slender recirculation region within the flow field on cross-stream heat or mass transport in the important limit of high Péclet number, where the enhancement over pure conductive heat transfer without recirculation is most pronounced. By employing matched asymptotic expansion, the authors have estimated the steady enhancement to resolve the diffusive boundary layers at the separatrices which bound the recirculation region.
This study is found most useful in many heat and mass transport devices which operate at high Péclet number. The authors claim that the chaotic enhancement can improve their performance and that a small amplitude theory can be used to optimise its application.

MSC:

76U05 General theory of rotating fluids
76D08 Lubrication theory
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Ohadi, Heat Transfer 4 pp 19– (1991) · doi:10.1080/08916159108946403
[2] DOI: 10.1088/0034-4885/46/5/002 · doi:10.1088/0034-4885/46/5/002
[3] DOI: 10.1007/BF01001572 · doi:10.1007/BF01001572
[4] Chaiken, Proc. R. Soc. Lond. 408 pp 165– (1986)
[5] DOI: 10.1088/0951-7715/1/3/002 · Zbl 0645.76026 · doi:10.1088/0951-7715/1/3/002
[6] DOI: 10.1017/S0022112056000123 · Zbl 0070.42004 · doi:10.1017/S0022112056000123
[7] DOI: 10.1007/BF00280016 · Zbl 0354.76073 · doi:10.1007/BF00280016
[8] DOI: 10.1063/1.865828 · Zbl 0608.76028 · doi:10.1063/1.865828
[9] DOI: 10.1063/1.857415 · Zbl 0659.76097 · doi:10.1063/1.857415
[10] DOI: 10.1017/S0022112084001233 · Zbl 0559.76085 · doi:10.1017/S0022112084001233
[11] DOI: 10.1103/PhysRevA.40.2579 · doi:10.1103/PhysRevA.40.2579
[12] DOI: 10.1146/annurev.fl.15.010183.002021 · doi:10.1146/annurev.fl.15.010183.002021
[13] Swanson, J. Fluid Mech. 213 pp 227– (1990)
[14] Acharya, Intl J. Heat Mass Transfer none pp none– (1992)
[15] DOI: 10.1103/PhysRevA.38.6280 · doi:10.1103/PhysRevA.38.6280
[16] Karney, Physica 8D pp 360– (1983)
[17] Holmes, Contemp. Maths 28 pp 393– (1984) · Zbl 0521.76049 · doi:10.1090/conm/028/751997
[18] DOI: 10.1002/aic.690140113 · doi:10.1002/aic.690140113
[19] DOI: 10.1017/S0022112086000502 · doi:10.1017/S0022112086000502
[20] Escande, Nonlinearity 214 pp 517– (1992)
[21] Cox, J. Fluid Mech. 214 pp 517– (1990)
[22] DOI: 10.1016/0370-1573(79)90023-1 · doi:10.1016/0370-1573(79)90023-1
[23] Shraiman, Phys. Rev. 36 pp 261– (1987)
[24] DOI: 10.1002/aic.690300303 · doi:10.1002/aic.690300303
[25] DOI: 10.1103/PhysRevA.34.4136 · doi:10.1103/PhysRevA.34.4136
[26] DOI: 10.1063/1.866107 · Zbl 0636.76089 · doi:10.1063/1.866107
[27] Rom-Kedar, J. Fluid Mech. 214 pp 347– (1990)
[28] DOI: 10.1016/0167-2789(90)90135-C · Zbl 0706.58065 · doi:10.1016/0167-2789(90)90135-C
[29] DOI: 10.1017/S0022112083001822 · Zbl 0576.76088 · doi:10.1017/S0022112083001822
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.