×

Modelling the fast fluorescence rise of photosynthesis. (English) Zbl 0757.92006

The fast fluorescence rise of photosynthesis is modelled by a system of coupled nonlinear ODE’s, which combines the reaction scheme of the photosystem-II two-electron gate with a quasi-steady-state approximation of the fast processes of excitation energy transfer and primary charge separation. The model is fitted to measured induction curves with a multiple shooting algorithm, which reveals very good agreement with the data. Model refinements are discussed focusing on photosystem-II heterogeneity, and on photosystem-I.

MSC:

92C05 Biophysics
92C45 Kinetics in biochemical problems (pharmacokinetics, enzyme kinetics, etc.)
34A55 Inverse problems involving ordinary differential equations
Full Text: DOI

References:

[1] Arnon, D. I. and G. M.-S. Tang. 1988. Cytochrome b-559 and proton conductance in oxygenic photosynthesis.Proc. natn. Acad. Sci. U.S.A. 85, 9524–9528. · doi:10.1073/pnas.85.24.9524
[2] Bader, G. and P. deuflhard, 1981.A semi-implicit mid-point rule for stiff systems of ODE, SFB 123. Technical Report 114, University of Heidelberg, 1981.
[3] Baake, E. 1989. Differentialgleichungssystem zur Beschreibung der Fluoreszenzinduktion (OIDP-Kinetik) der Photosynthese. PhD Theses, University of Bonn (in German).
[4] Baker, N. R. and A. N. Webber. 1987. Interactions between photosystems.Adv. Bot. Res. 13, 1–66. · doi:10.1016/S0065-2296(08)60340-7
[5] Black, M. T., T. H. Brearley and P. Horton. 1986. Heterogeneity in chloroplast photosystem II.Photosynth. Res. 8, 193–207. · doi:10.1007/BF00037128
[6] Böhme, H. 1978. Quantitative determination of ferredoxin, ferredoxin-NADP+-reductase and plastocyanin in spinach chloroplasts.Eur. J. Biochem. 83, 137–141. · doi:10.1111/j.1432-1033.1978.tb12077.x
[7] Bock, H. G. 1981. Numerical treatment of inverse problems in chemical reaction kinetics. InModelling of Chemical Reaction Systems, K. H. Ebert, P. Deuflhard and W. Jäger (Eds), pp. 102–125. Berlin: Springer.
[8] Bock, H. G. 1987. Randwertproblemmethoden zur Parameteridentifizierung in Systemen nichtlinearer Differentialgleichungen.Bonner Mathematische Schriften, Vol. 183. E. Brieskornet al. (Eds) (in German). · Zbl 0622.65064
[9] Briantais, J. M.et al. 1986. Chlorophyll a fluorescence of higher plants: chloroplasts and leaves. InLight Emission by Plants and Bacteria, Govindjee, J. Amesz and D. C. Fork (Eds). New York: Academic Press.
[10] Crofts, A. R. and C. A. Wraight. 1983. The electrochemical domain of photosynthesis.Biochim. Biophys. Acta 726, 149–185. · doi:10.1016/0304-4173(83)90004-6
[11] Dau, H., R. Windecker and U. P. Hansen. 1992. Effect of light-induced changes in thylakoid voltage on chlorophyll fluorescence of Aegopodium podagraria leaves.Biochim. Biophys. Acta, in press.
[12] Duysens, L. M. N. 1986. Introduction to (bacterio)chlorophyll emission: A historical perspective. InLight Emission by Plants and Bacteria, Govindjee, J. Amesz and D. C. Fork (Eds). New York: Academic Press.
[13] Forbush, B. and B. Kok. 1968. Reaction between primary and secondary electron acceptors of photosystem II of photosynthesis.Biochim. Biophys. Acta,162, 243–253. · doi:10.1016/0005-2728(68)90106-0
[14] van Gorkom, H. 1986. Fluorescence measurements in the study of photosystem II electron transport. InLight Emission by Plants and Bacteria, Govindjee, J. Amesz and D. C. Fork (Eds). New York: Academic Press.
[15] Govindjee and J. J. Eaton-Rye. 1986. Electron transfer through photosystem II acceptors: Interaction with anions.Photosynth. Res. 10, 365–379. · doi:10.1007/BF00118302
[16] Govindjee and K. Satoh. 1986. Fluorescence properties of chlorophyll b- and chlorophyll c-containing algae. InLight Emission by Plants and Bacteria, Govindjee, J. Amesz and D. C. Fork (Eds). New York: Academic Press.
[17] Haehnel, W. 1984. Photosynthetic electron transport.Ann. Rev. Plant Physiol. 35, 659–693. · doi:10.1146/annurev.pp.35.060184.003303
[18] Joliot, P. and A. Joliot. 1964. Etudes cinétiques de la réaction photochimique liberant l’oxygène au cours de la photosynthèse.C. R. Acad. Sci. Paris 258, 4622–4625.
[19] Jursinic, P. A. 1986. Delayed fluorescence: Current concepts and status. InLight Emission by Plants and Bacteria, Govindjee, J. Amesz and D. C. Fork (Eds). New York: Academic Press.
[20] Kautsky, H. and A. Hirsch. 1931. Neue Versuche zur Kohlensäureassimilation.Naturwissenschaften 48, 964–981. · doi:10.1007/BF01516164
[21] Kischkoweit, C., W. Leibl and H. W. Trissl. 1988. Theoretical and experimental study of trapping times and antenna organization in pea chloroplasts by means of the artificial fluorescence quencher m-dinitrobenzene.Biochim. Biophys. Acta 933, 276–287. · doi:10.1016/0005-2728(88)90035-7
[22] Krause, G. H. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: The basics.Ann. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349. · doi:10.1146/annurev.pp.42.060191.001525
[23] Lavergne, L. 1982a. Two types of primary acceptors in chloroplast photosystem II. I. Different recombination properties.Photobiochem. Photobiophys. 3, 257–271.
[24] Lavergne, L. 1982b. Two types of primary acceptors in chloroplast photosystem II. II. Reduction in two successive photoacts.Photobiochem. Photobiophys. 3, 273–285.
[25] Leibl, W., J. Breton, J. Deprez and H. W. Trissl. 1989. Photoelectric study on the kinetics of trapping and charge stabilization in oriented PS II membranes.Photosynth. Res. 22, 257–275. · doi:10.1007/BF00048304
[26] McCauley, S. W., A. Melis, G. H. S. Tang and D. I. Arnon. 1987. Protonophores induce plastoquinol oxidation and quench chloroplast fluorescence: Evidence for a cyclic, protonconducting pathway in oxygenic photosynthesis.Proc. natn. Acad. Sci. U.S.A. 84, 8424–8428. · doi:10.1073/pnas.84.23.8424
[27] Neubauer, C. and U. Schreiber. 1987. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: I. Saturation characteristics and partial control by the photosystem II acceptor side.Z. Naturforsch. 42c, 1246–1254.
[28] Renger, G. and A. Schulze. 1985. Quantitative analysis of fluorescence induction curves in isolated spinach chloroplasts.Photobiochem. Photobiophys. 9, 79–87.
[29] Renger, G. and U. Schreiber. 1986. Practical applications of fluorometric methods to algae and higher plant research. InLight Emission by Plants and Bacteria, Govindjee, A. Amesz and D. C. Fork (Eds). New York: Academic Press.
[30] Sane, P. V. and A. W. Rutherford. 1986. Thermoluminescence from photosynthetic membranes. InLight Emission by Plants and Bacteria, Govindjee, J. Amesz and D. C. Fork (Eds). New York: Academic Press.
[31] Schatz, G. H., H. Brock and A. R. Holzwarth. 1988. Kinetic and energetic model for the primary processes in photosystem II.Biophys. J. 54, 397–405. · doi:10.1016/S0006-3495(88)82973-4
[32] Schlöder, J. P. 1988. Numerische Methoden zur Behandlung hochdimensionaler Aufgaben der Parameteridentifizierung.Bonner Mathematische Schriften, Vol. 187, E. Brieskornet al. (Eds) (in German). · Zbl 0639.65036
[33] Schreiber, U., R. Bauer and U. F. Franck. 1971. Chlorophyll fluorescence induction in green plants at oxygen deficiency.Proceedings of the IInd International Congress on Photosynthesis, Stresa 1971, pp. 169–179.
[34] Schreiber, U. and C. Neubauer. 1987. The polyphasic rise of chlorophyll fluorescence upon onset of strong continuous illumination: II. Partial control by the photosystem II donor side and possible ways of interpretation.Z. Naturforsch. 42c, 1255–1264.
[35] Strasser, R. J. 1978. The grouping model of plant photosynthesis. InChloroplast Development, G. Akoyunoglou,et al. (Eds). North Holland: Biomedical Press, Elsevier.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.