×

Simulation of system models containing zero-order causal paths. I.: Classification of zero-order causal paths. (English) Zbl 0757.65080

This paper relates the process of simulating a physical system from bond graph models in which there exist zero-order causal paths to systems of differential-algebraic equations (DAEs). Basically zero-order causal paths can arise algebraically in a loop if no integrating elements are present or if there exists a causal path between a storage element with derivative causality and a storage element with integral causality.
The concept of an essential causal cycle (which is a closed causal path which cannot be eliminated) is introduced which is used to classify 5 different classes of zero-order causal paths which are then related to different types of DAEs and their index of nilpotency.
Examples are given from electronic circuits and mechanical systems using bond graph models to illustrate these relationships.

MSC:

65L05 Numerical methods for initial value problems involving ordinary differential equations
65C20 Probabilistic models, generic numerical methods in probability and statistics
34A34 Nonlinear ordinary differential equations and systems

Citations:

Zbl 0757.65081

Software:

DASSL
Full Text: DOI

References:

[1] Broenink, J. F., Computer-aided physical-systems modeling and simulation: a bond graph approach, (Ph.D. thesis (1990), University of Twente: University of Twente Enschede, The Netherlands), ISBN 90-9003298-3
[2] Karnopp, D. C.; Rosenberg, R. C., Analysis and Simulation of Multiport Systems (1968), M.I.T. Press: M.I.T. Press Cambridge, MA
[3] Joseph, B. J.; Martens, H. R., The method of relaxed causality in the bond graph analysis of nonlinear systems, J. Dyn. Syst. Meas. Control, 95-99 (1974) · Zbl 0284.93015
[4] Karnopp, D., Alternative bond graph causal patterns and equations for dynamic systems, J. Dyn. Syst. Meas. Control, Vol. 105, 58-63 (1983) · Zbl 0511.93009
[5] van Dixhoorn, J. J., Simulation of bond graphs on mini-computers, Trans. ASME J. Dyn. Syst. Meas. Control, Vol. 99, 9-14 (1977)
[6] Karnopp, D. C.; Rosenberg, R. C., System Dynamics, A Unified Approach (1975), Wiley: Wiley New York
[7] Martens, H. R., Simulation of nonlinear multiport systems using bond graphs, Trans. ASME J. Dyn. Syst. Meas. Control, Vol. 95, No. 3, 49-53 (1973)
[8] Gear, C. W., Simultaneous numerical solutions of differential/algebraic equations, IEEE Trans. Circuit Theory, Vol. CT-18, No. 1, 89-95 (1971)
[9] Karnopp, D. C.; Margolis, D., Analyses and simulation of planar mechanism systems using bond graphs, J. Mechanism Design, Vol. 101, No. 2, 187-191 (1979)
[10] Lorenz, F.; Wolper, J., Assigning causality in the case of algebraic loops, J. Franklin Inst., Vol. 319, No. 1/2, 237-241 (1985)
[11] Barreto, J.; Lefevre, J., R-Fields in the solution of implicit equations, J. Franklin Inst., Vol. 319, No. 1/2, 227-236 (1985)
[12] Bos, A. M., Modeling multibody systems in terms of multibond graphs, (Ph.D. thesis (1986), University of Twente: University of Twente Enschede, The Netherlands), ISBN 90-9001442-X
[13] Allen, R. R., Dynamics of mechanisms and machine systems in accelerating reference frames, Trans. ASME J. Dyn. Syst. Meas. Control, Vol. 103, 395-403 (1981)
[14] Zeid, A., An algorithm for eliminating derivative causality, (Rosenberg, R. C.; Redfield, R., Automated Modeling for Design, DSC-Vol. 8 (1988), ASME: ASME New York), 15-21
[15] Zeid, A., Bond graph modeling of planar mechanisms with realistic joint effects, Trans. ASME J. Dyn. Syst. Meas. Control, Vol. 111, 15-23 (1989)
[16] Rosenberg, R. C., Exploiting bond graph causality in physical system models, Trans. ASME J. Dyn. Syst. Meas. Control, Vol. 109, 378-383 (1987)
[17] Gear, C. W.; Petzold, L. R., ODE methods for the solution of differential/algebraic systems, Siam J. Numerical Anal., Vol. 21, No. 4, 716-728 (1984) · Zbl 0557.65053
[18] Brown, F. T., Direct application of the loop rule to bond graphs, Trans. ASME J. Dyn. Syst. Meas. Control, Vol. 94, No. 3, 253-261 (1972)
[19] Rosenberg, R. C., State-space formulation of bond graph models of multiport systems, Trans. ASME J. Dyn. Syst. Meas. Control, Vol. 93, No. 1, 35-40 (1971)
[20] Brayton, R. K.; Gustavson, F. G.; Hachtel, G. D., A new efficient algorithm for solving DAEs using BDF, Proc. IEEE, Vol. 60, No. 1, 98-108 (1972)
[21] Petzold, L. R., A description of DASSL: a differential/algebraic system solver, Proceedings 10th IMACS Congress, Vol. 1, 430-432 (1982), Montreal
[22] Loetstedt, P.; Petzold, L. R., Numerical solution of nonlinear differential equations with algebraic constraints 1: Convergence results for BDF, Math. Computation, Vol. 46, No. 174, 491-516 (1986) · Zbl 0601.65060
[23] Petzold, L. R.; Loetstedt, P., Numerical solutions of nonlinear differential equations with algebraic constraints 2: Practical implications, Siam J. Sci. Stat. Comput., Vol. 7, No. 3, 720-733 (1986) · Zbl 0632.65086
[24] Sincovec, R. F.; Dembart, B.; Epton, M. A.; Erisman, A. M.; Manke, S. W.; Yip, E. L., Solvability of large scale descriptor systems (1979), Boeing Computer Services Company: Boeing Computer Services Company Seattle, WA
[25] Liniger, W., Multistep and one-leg methods for implicit mixed differential/algebraic systems, IEEE Trans. Circuits Systems, Vol. CAS-26, No. 9, 755-762 (1979) · Zbl 0415.34017
[26] Petzold, L. R., Order results for implicit Runge-Kutta methods applied to differential/algebraic systems, Siam J. Numerical Anal., Vol. 23, No. 4, 837-852 (1986) · Zbl 0635.65084
[27] Deuflhard, P.; Hairer, E.; Zugck, J., One-step and extrapolation methods for differential-algebraic systems, Numerische Mathematik, Vol. 51, 501-516 (1987) · Zbl 0635.65083
[28] van Dijk, J.; Breedveld, P. C., Simulation of system models containing zero-order causal paths—II. Numerical implications, J. Franklin Inst., Vol. 328, No. 5/6, 981-1004 (1991) · Zbl 0757.65081
[29] Petzold, L. R., Differential/algebraic equations are not ODEs, Siam J. Sci. Stat. Comput., Vol. 3, No. 3, 367-384 (1982) · Zbl 0482.65041
[30] Hogan, N.; Fasse, E. D., Conservation principles and bond graph junction structure, (Rosenberg, R. C.; Redfield, R., Automated Modeling for Design, DSC-Vol. 8 (1988), ASME: ASME New York), 9-14
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.