×

Upper and lower images of a fuzzy set induced by a fuzzy relation: Applications to fuzzy inference and diagnosis. (English) Zbl 0755.94026

Summary: In fuzzy set theory the image of a fuzzy set induced by a fuzzy relation is usually obtained by a sup-\(t\)-norm composition. This corresponds to the upper image which gathers the elements in relation with at least one element of the fuzzy set. However the dual point of view, leading to the definition of the lower image as the fuzzy set of elements in relation with all the elements of the fuzzy set whose image is computed, is not often considered. Fuzzy sets and fuzzy relations, depending on the situations, can be interpreted either in a conjunctive manner or as subsets of mutually exclusive possible values for variables whose precise values are ill-known (disjunctive view). The applications of upper and lower images are investigated in both interpretations. The generalized modus ponens, used in fuzzy rule-based systems, corresponds to the disjunctive view. The interest of upper and lower images is also emphasized for diagnosis problems where the conjunctive interpretation is encountered.

MSC:

94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory)
Full Text: DOI

References:

[1] Kitowski, J.; Bargiel, M., Diagnosis of faulty states in complex physical systems using fuzzy relational equations, (Sanchez, E.; Zadeh, L. A., Approximate Reasoning in Intelligent Systems Decision and Control (1987), Pergamon: Pergamon Oxford), 175-194
[2] Asse, A.; Mangin, P.; Willaeys, D., Assisted diagnosis using fuzzy information: method of inverting equations of fuzzy relations with Φ-fuzzy sets, (Bezdek, J. C., Analysis of Fuzzy Information, Vol. 2 (1987), CRC Press: CRC Press Boca Raton, Florida), 153-162
[3] Bandler, W.; Kohout, L. J., Fuzzy power sets and fuzzy implication operators, Fuzzy sets Syst., 4, 13-20 (1980) · Zbl 0433.03013
[4] Di Nola, A.; Sessa, S.; Pedrycz, W., Fuzzy relational equations and algorithms of inference mechanisms in expert systems, (Gupta, M. M.; etal., Approximate Reasoning in Expert Systems (1985), North-Holland), 355-367
[5] Di Nola, A.; Sessa, S.; Pedrycz, W.; Sanchez, E., Fuzzy Relation Equations and their Applications to Knowledge Engineering (1989), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0694.94025
[6] Dubois, D.; Prade, H., Fuzzy logics and the generalized modus ponens revisited, Cybern. Syst., 15, 3-4, 293-331 (1984) · Zbl 0595.03016
[7] Dubois, D.; Prade, H., A theorem on implication functions defined from triangular norms, Stochastica, 8, 267-279 (1984) · Zbl 0581.03016
[8] Dubois, D.; Prade, H., The generalized modus ponens under sup-min composition—A theoretical study, (Gupta, M. M.; Kandel, A.; Bandler, W.; Kiszka, J. B., Approximate Reasoning in Expert Systems (1985), North-Holland), 217-232
[9] Dubois, D.; Prade, H., A review of fuzzy set aggregation connectives, Inform. Sci., 36, 1-2, 85-121 (1985) · Zbl 0582.03040
[10] Dubois, D.; Prade, H., Weighted minimum and maximum operations—An addendum to “A review of fuzzy set aggregation conectives”, Inform. Sci., 39, 205-210 (1986) · Zbl 0605.03021
[11] Trillas, E.; Valverde, L., On mode and implication in approximate reasoning, (Gupta, M. M.; Kandel, A.; Bandler, W.; Kiszka, J. B., Approximate Reasoning in Expert Systems (1985), North-Holland), 157-166
[12] Dubois, D.; Prade, H., Incomplete conjunctive information, Comput. Math. Appl., 15, 797-810 (1988) · Zbl 0709.94588
[13] Dubois, D.; Prade, H., Twofold fuzzy sets and rough sets—some issues in knowledge representation, Fuzzy Sets Syst., 23, 3-18 (1987) · Zbl 0633.68099
[14] Dubois, D.; Prade, H., Possibility Theory (1988), Masson: Masson New York, English version · Zbl 0741.68091
[15] Dubois, D.; Prade, H.; Testemale, C., Weighted fuzzy pattern matching, Fuzzy Sets Syst., 28, 313-331 (1988) · Zbl 0658.94026
[16] de Cerro, L. Fariñas; Prade, H., Rough sets, twofold fuzzy sets, and modal logic—fuzziness in indiscernibility and partial information, (Di Nola, A.; Ventre, A. G.S., The Mathematics of Fuzzy Systems (1986), Verlag TÜV Rheinland: Verlag TÜV Rheinland Köln), 103-120 · Zbl 0593.03032
[17] Goguen, J., L-fuzzy sets, J. Math. Anal. Appl., 18, 145-174 (1967) · Zbl 0145.24404
[18] Izumi, K.; Tanaka, H.; Asai, K., Adjoint fuzzy systems based on L-fuzzy logic and their applications, (Bezdek, J. C., Analysis of Fuzzy Information. Analysis of Fuzzy Information, Mathematics and Logic, Vol. 1 (1987), CRC Press: CRC Press Florida), 231-239 · Zbl 0661.93004
[19] Izumi, K.; Tanaka, H.; Asai, K., Adjointness of fuzzy systems, Fuzzy Sets Syst., 20, 2, 211-221 (1986) · Zbl 0633.03014
[20] Mamdani, E. H., Applications of fuzzy logic to approximate reasoning using linguistic systems, IEEE Trans. Comput., 26, 1182-1191 (1977) · Zbl 0397.94025
[21] Miyakoshi, M.; Shimbo, M., Solutions of composite fuzzy relational equations with triangular norms, Fuzzy Sets Syst., 16, 53-64 (1985), 1985 · Zbl 0582.94031
[22] Prade, H., Corrections, 7, 6, 747-748 (1985)
[23] Prade, H.; Testemale, C., Generalizing database relational algebra for the treatment of incomplete/uncertain information and vague queries, Inform. Sci., 34, 115-143 (1984), 1984 · Zbl 0552.68082
[24] Reggia, J. A.; Nau, D. S.; Wang, P. Y.; Peng, H., A formal model of diagnostic inference, Inform. Sci., 37, 227-285 (1985) · Zbl 0583.68047
[25] Sanchez, E., Resolution in composite fuzzy relation equations, Inform. Control, 30, 38-48 (1976) · Zbl 0326.02048
[26] Sanchez, E., Solutions in composite fuzzy relation equations: application to medical diagnosis in Brouwerian logic, (Gupta, M. M.; Saridis, G. N.; Gaines, B. R., Fuzzy Automata and Decision Processes (1977), North-Holland), 221-234
[27] Schweizer, B.; Sklar, A., Associative functions and abstract semi-groups, Publ. Math. (Debrecen), 10, 69-81 (1963) · Zbl 0119.14001
[28] Tsukamoto, Y.; Terano, T., Failure diagnosis by using fuzzy logic, (Proceedings of the IEEE Conference Decision and Control. Proceedings of the IEEE Conference Decision and Control, New Orleans (1977)), 1390-1395
[29] Yager, R. R., Set-based representations of conjunctive and disjunctive knowledge, Inform. Sci., 41, 1-23 (1987) · Zbl 0626.68073
[30] Yager, R. R., \(Q\)-projections of possibility distributions, IEEE Trans. Syst. Man Cyber., 15, 775-777 (1985) · Zbl 0587.68090
[31] Zadeh, L. A., Fuzzy sets, Inform. Control, 8, 338-353 (1965) · Zbl 0139.24606
[32] Zadeh, L. A., Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst., 1, 1, 3-28 (1978) · Zbl 0377.04002
[33] Zadeh, L. A., PRUF—a meaning representation language for natural languages, Int. J. Man-Mach. Stud., 10, 4, 395-460 (1978) · Zbl 0406.68063
[34] Zadeh, L. A., A theory of approximate reasoning, (Hayes, J. E.; Michie, D.; Mikulich, L. I., Machine Intelligence, Vol. 9 (1979), Halsted Press: Halsted Press New York), 149-194
[35] Zadeh, L. A., A computational approach to fuzzy quantifiers in natural languages, Comput. Math. Appl., 9, 149-184 (1983) · Zbl 0517.94028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.