×

A nullset for normal functions in several variables. (English) Zbl 0755.32006

The main result in this paper is the following: Let \(E\) be a closed subset of a domain \(\Omega\) in \(\mathbb{C}^ n\), \(f:\Omega/E\to C^*\) be meromorphic. If \(f\) is normal and \(E\) is an analytic subvariety or of locally finite \((2n-2)\)-dimensional Hausdorff measure in \(\Omega\) satisfying certain geometric conditions then \(f\) can be extended to a meromorphic function \(f^*:\Omega\to C^*\).
In the case of a sub-variety, a sufficient geometric condition is that the singularities of \(E\) are normal crossings.
Two examples, which give natural exceptional sets in the considering setting, of meromorphic functions with values in \(C^*\) which satisfy the specified conditions, but which are such that the extension result cannot be applied, are discussed. Incidentally a new proof for the following Theorem (of Parreau): “\(f\) be in the Nevanlinna class and \(E\) be polar in \(R^ 2\) then \(f\) has meromorphic extension \(f^*\) to \(\Omega\)” is given.

MSC:

32A20 Meromorphic functions of several complex variables
32A17 Special families of functions of several complex variables
32H25 Picard-type theorems and generalizations for several complex variables
30D45 Normal functions of one complex variable, normal families
Full Text: DOI

References:

[1] Lars V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973. McGraw-Hill Series in Higher Mathematics. · Zbl 0272.30012
[2] C. Carathéodory, Theory of functions, vol. 2, Chelsea, New York, 1960. · JFM 54.0359.01
[3] Urban Cegrell, Removable singularity sets for analytic functions having modulus with bounded Laplace mass, Proc. Amer. Math. Soc. 88 (1983), no. 2, 283 – 286. · Zbl 0514.32011
[4] Joseph A. Cima and Ian R. Graham, On the extension of holomorphic functions with growth conditions across analytic subvarieties, Michigan Math. J. 28 (1981), no. 2, 241 – 256. · Zbl 0438.32008
[5] Joseph A. Cima and Ian Graham, Removable singularities for Bloch and BMO functions, Illinois J. Math. 27 (1983), no. 4, 691 – 703. · Zbl 0522.32009
[6] Joseph A. Cima and Steven G. Krantz, The Lindelöf principle and normal functions of several complex variables, Duke Math. J. 50 (1983), no. 1, 303 – 328. · Zbl 0522.32003 · doi:10.1215/S0012-7094-83-05014-7
[7] Roy O. Davies and Henryk Fast, Lebesgue density influences Hausdorff measure; large sets surface-like from many directions, Mathematika 25 (1978), no. 1, 116 – 119. · Zbl 0378.28012 · doi:10.1112/S0025579300009335
[8] H. Federer, Geometric measure theory, Springer-Verlag, Berlin, 1969. · Zbl 0176.00801
[9] Dennis A. Hejhal, Linear extremal problems for analytic functions, Acta. Math. 128 (1972), no. 1-2, 91 – 122. · Zbl 0226.30019 · doi:10.1007/BF02392161
[10] M. Hervé, Several complex variables, 2nd ed., Oxford University Press, New Delhi, 1987. · Zbl 0646.32001
[11] Jaakko Hyvönen and Juhani Riihentaus, On the extension in the Hardy classes and in the Nevanlinna class, Bull. Soc. Math. France 112 (1984), no. 4, 469 – 480 (English, with French summary). · Zbl 0587.32011
[12] Jaakko Hyvönen and Juhani Riihentaus, Removable singularities for holomorphic functions with locally finite Riesz mass, J. London Math. Soc. (2) 35 (1987), no. 2, 296 – 302. · Zbl 0622.32014 · doi:10.1112/jlms/s2-35.2.296
[13] Pentti Järvi, An extension theorem for normal functions, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1171 – 1174. · Zbl 0659.32022
[14] Peter Kiernan, Extensions of holomorphic maps, Trans. Amer. Math. Soc. 172 (1972), 347 – 355. · Zbl 0255.32014
[15] Olli Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta Math. 97 (1957), 47 – 65. · Zbl 0077.07702 · doi:10.1007/BF02392392
[16] Kiyoshi Noshiro, Cluster sets, Ergebnisse der Mathematik und ihrer Grenzgebiete. N. F., Heft 28, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. · Zbl 0090.28801
[17] M. Parreau, Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier Grenoble 3 (1951), 103 – 197 (1952) (French). · Zbl 0047.32004
[18] Juhani Riihentaus, Removable singularities of analytic functions of several complex variables, Math. Z. 158 (1978), no. 1, 45 – 54. · Zbl 0351.32014 · doi:10.1007/BF01214564
[19] Juhani Riihentaus, Removable singularities in the Nevanlinna class and in the Hardy classes, Proc. Amer. Math. Soc. 102 (1988), no. 3, 546 – 550. · Zbl 0647.32016
[20] Donald Sarason, Function theory on the unit circle, Virginia Polytechnic Institute and State University, Department of Mathematics, Blacksburg, Va., 1978. Notes for lectures given at a Conference at Virginia Polytechnic Institute and State University, Blacksburg, Va., June 19 – 23, 1978. · Zbl 0398.30027
[21] Bernard Shiffman, On the removal of singularities of analytic sets, Michigan Math. J. 15 (1968), 111 – 120. · Zbl 0165.40503
[22] J. Väisälä, Lectures on \( n\)-dimensional quasiconformal mappings, Springer-Verlag, Berlin, 1971. · Zbl 0221.30031
[23] S. A. Vinogradov and V. P. Havin, Free interpolation in \( {{\text{H}}^\infty }\) and in other certain classes of functions, I, J. Soviet Math. 9 (1978), 137-171. · Zbl 0398.41002
[24] Shinji Yamashita, Functions of uniformly bounded characteristic on Riemann surfaces, Trans. Amer. Math. Soc. 288 (1985), no. 1, 395 – 412. · Zbl 0563.30029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.