×

Module extensions and the second layer condition. (English) Zbl 0755.16012

A right \(R\)-module \(M\) over a right Noetherian ring \(R\) is \(\beta\)-stable (for an ordinal \(\beta\)) if the set of finitely generated submodules of \(M\) with Krull dimension less than \(\beta\) is closed under essential extensions. In [A. V. Jategaonkar, Trans. Am. Math. Soc. 190, 109- 123 (1974; Zbl 0284.16003)] it was proved that all modules over a right and left FBN ring are \(\beta\)-stable (for any \(\beta\)). The theory of rings with the second layer condition (s.l.c.) (which has its roots in the above paper) enables the above result to be easily extended to tame modules over a Noetherian s.l.c. ring for which certain symmetry conditions on Krull dimension are satisfied. In the present paper these ideas are developed in a setting which permits the extension to right Noetherian s.l.c. rings of [J. A. Beachy, J. Pure Appl. Algebra 24, 235-244 (1982; Zbl 0489.16019)] (in which Jategaonkar’s result was generalized to a characterization of \(\beta\)-stable modules over right FBN rings).

MSC:

16P40 Noetherian rings and modules (associative rings and algebras)
16P60 Chain conditions on annihilators and summands: Goldie-type conditions
16D25 Ideals in associative algebras
16S90 Torsion theories; radicals on module categories (associative algebraic aspects)
Full Text: DOI

References:

[1] DOI: 10.1016/0022-4049(82)90041-X · Zbl 0489.16019 · doi:10.1016/0022-4049(82)90041-X
[2] DOI: 10.1016/0022-4049(84)90059-8 · Zbl 0547.16008 · doi:10.1016/0022-4049(84)90059-8
[3] Beachy J. A., Comm. Algebra 6 pp 1034– (1978)
[4] DOI: 10.1016/0021-8693(88)90080-4 · Zbl 0658.16001 · doi:10.1016/0021-8693(88)90080-4
[5] DOI: 10.1016/0022-4049(86)90106-4 · Zbl 0591.16013 · doi:10.1016/0022-4049(86)90106-4
[6] DOI: 10.1017/S0017089500004729 · Zbl 0478.16010 · doi:10.1017/S0017089500004729
[7] DOI: 10.1080/00927877608822093 · Zbl 0319.16014 · doi:10.1080/00927877608822093
[8] DOI: 10.1080/00927877808822242 · Zbl 0368.16009 · doi:10.1080/00927877808822242
[9] Chatters, A. W. and Hajarnavis, C. R. 1980. ”Rings with chain conditions”. Boston, London: Pitman Publishing Ltd. · Zbl 0446.16001
[10] Goodearl K. R., Texts in Pure and Appl.Math 33 (1976)
[11] DOI: 10.1112/jlms/s2-37.3.404 · Zbl 0612.16005 · doi:10.1112/jlms/s2-37.3.404
[12] Gordon R., Mem.Amer.Math. Soc 133 (1978)
[13] DOI: 10.1090/S0002-9947-1974-0349727-X · doi:10.1090/S0002-9947-1974-0349727-X
[14] Jategaonkar A. V., London Math. Soc. Lecture Note Series 98 (1987)
[15] Mc Connell J. C., Wiley series in Pure Appl. Math (1987)
[16] DOI: 10.1080/00927879008823995 · Zbl 0713.16018 · doi:10.1080/00927879008823995
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.