×

Some general local variational principles. (English) Zbl 0753.47001

Local variational min-sup characterizations are presented for the real spectrum of a selfadjoint operator pencil on a separable Hilbert space \(H\). Instead of minimizing over all subspaces of fixed codimensions as in classical results the new characterizations minimize over subspaces that are close to extremal subspaces. Particularly the following theorem is proved.
Theorem. Let \(\lambda_ 0\) be an \(A\)-positive eigenvalue of the operator pencil \(P: \lambda\to\lambda A-B\), \[ Bx=\lambda_ 0 Ax,\qquad x\in C_ +=\{x\in H\mid\;(Ax,x)>0\}, \] let \(E\) be the resolution of the identity for \(\lambda_ 0 A-B\) and \[ S_ 0={\mathfrak R}(E_ 0), \quad T_ 0={\mathfrak R}(I-E_ 0), \quad E_ 0=E(]-\infty,0[). \] Then there is \(\varepsilon>0\) such that \(\lambda_ 0=\min_{S\in N_ \varepsilon(S_ 0,T_ 0)} \sup_{x\in S\cap C_ +} (Bx,x)/(Ax,x)\).
Here \(S_ 0\), \(T_ 0\) are closed subspaces with orthonormal bases \(\{e_ n\}_{n=0}^{+\infty}\), \(\{e_ n\}_{-n=1}^{+\infty}\), \(S_ 0+T_ 0=H\), \[ N_ \varepsilon (S_ 0,T_ 0)=\{\text{span}\{e_ n+e_ n'\}_{n=0}^{+\infty}:\;e_ n'=\sum_{m=- \infty}^{+\infty}\varepsilon_{mn}e_ m,\;\sum_{m=- \infty}^{+\infty} |\varepsilon_{mn}|^ 2<\varepsilon\}. \]

MSC:

47A11 Local spectral properties of linear operators
49R50 Variational methods for eigenvalues of operators (MSC2000)
47A56 Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones)
Full Text: DOI

References:

[1] W. Allegretto and A. B. Mingarelli, Boundary problems of the second order with an indefinite weight-function, J. Reine Angew. Math. 398 (1989), 1 – 24. · Zbl 0668.35073
[2] Paul Binding, A canonical form for selfadjoint pencils in Hilbert space, Integral Equations Operator Theory 12 (1989), no. 3, 324 – 342. · Zbl 0674.47004 · doi:10.1007/BF01235736
[3] P. A. Binding and K. Seddighi, On root vectors of selfadjoint pencils, J. Funct. Anal. 70 (1987), no. 1, 117 – 125. · Zbl 0613.47018 · doi:10.1016/0022-1236(87)90126-1
[4] Heinz Langer, Spectral functions of definitizable operators in Kreĭn spaces, Functional analysis (Dubrovnik, 1981) Lecture Notes in Math., vol. 948, Springer, Berlin-New York, 1982, pp. 1 – 46.
[5] B. Najman and Q. Ye, A minimax characterization for eigenvalues of Hermitian pencils, Linear Algebra Appl. 144 (1991), 217 – 230. · Zbl 0721.15009 · doi:10.1016/0024-3795(91)90071-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.