×

Galois groups and the multiplicative structure of field extensions. (English) Zbl 0753.12003

Let \(K/k\) be a finite Galois extension. Assume that \(k\) is not an algebraic extension of a finite field. Let \(K^*\) be the multiplicative group of \(K\), and let \(\theta(K/k)\) be the product of the multiplicative groups of the proper intermediate fields. The condition that the quotient group \({\mathcal G}=K^*/\theta(K/k)\) be torsion is shown to depend only on the Galois group \(G\). For algebraic number fields and function fields, the authors give a complete classification of those \(G\) for which \({\mathcal G}\) is nontrivial.
Let \(E_ 1,\ldots,E_ t\) be proper intermediate fields of \(K/k\). The authors determine when the quotient group \(K^*/E_ 1^*\ldots E_ t^*\) is either torsion or has a free summand of infinite rank. The authors show that \(K^*=\theta(K/k)\) whenever the Galois group contains \(S_ 4\). They also demonstrate by example that it is possible for \(K^*\) to be the product of the multiplicative groups of three intermediate fields; the situation for \(t=2\) having been previously examined.
The authors also show that \(K^*/\theta(K/k)\) is torsion if and only if the Galois group of \(K/k\) is not a Frobenius complement. If the group \(K^*/\theta(K/k)\) is a nontrivial torsion group, then it is bounded with prime power exponent \(p\) or \(p^ 2\) where \(p\) depends only on the Galois group. When relaxing the requirement that \(K/k\) be a finite Galois extension, the authors show that if \(E_ 1\) and \(E_ 2\) are subfields of \(K\) with \(K/(E_ 1\cap E_ 2)\) algebraic, then \(K^*/E_ 1^*E_ 2^*\) has infinite rank unless \(K\) is either algebraic over a finite field or purely inseparable over \(E_ 1\) or \(E_ 2\). Every field \(K\) of infinite transcendence degree over its prime subfield satisfies \(K^*=E_ 1^*E_ 2^*\) for suitable \(E_ 1\) and \(E_ 2\).

MSC:

12F10 Separable extensions, Galois theory
Full Text: DOI

References:

[1] Michael Aschbacher, Thin finite simple groups, J. Algebra 54 (1978), no. 1, 50 – 152. · Zbl 0418.20008 · doi:10.1016/0021-8693(78)90022-4
[2] -, Finite group theory, Cambridge Univ. Press, Cambridge, 1986.
[3] J. L. Alperin, Local representation theory, Cambridge Studies in Advanced Mathematics, vol. 11, Cambridge University Press, Cambridge, 1986. Modular representations as an introduction to the local representation theory of finite groups. · Zbl 0593.20003
[4] Albrecht Brandis, Über die multiplikative Struktur von Körpererweiterungen, Math. Z. 87 (1965), 71 – 73 (German). · Zbl 0127.26304 · doi:10.1007/BF01109932
[5] Larry Dornhoff, Group representation theory. Part A: Ordinary representation theory, Marcel Dekker, Inc., New York, 1971. Pure and Applied Mathematics, 7. Larry Dornhoff, Group representation theory. Part B: Modular representation theory, Marcel Dekker, Inc., New York, 1972. Pure and Applied Mathematics, 7. · Zbl 0227.20002
[6] -, Group representation theory, Part B, Dekker, New York, 1972.
[7] Edward D. Davis and Paolo Maroscia, Affine curves on which every point is a set-theoretic complete intersection, J. Algebra 87 (1984), no. 1, 113 – 135. · Zbl 0542.14013 · doi:10.1016/0021-8693(84)90163-7
[8] Walter Feit, The representation theory of finite groups, North-Holland Mathematical Library, vol. 25, North-Holland Publishing Co., Amsterdam-New York, 1982. · Zbl 0493.20007
[9] Walter Feit, On large Zsigmondy primes, Proc. Amer. Math. Soc. 102 (1988), no. 1, 29 – 36. · Zbl 0639.10007
[10] Robert M. Guralnick, A question of Stafford about affine pi algebras, Comm. Algebra 18 (1990), no. 9, 3055 – 3057. · Zbl 0704.16020 · doi:10.1080/00927879008824060
[11] W. J. Haboush, Multiplicative groups of Galois extensions, J. Algebra 165 (1994), no. 1, 122 – 137. · Zbl 0798.12004 · doi:10.1006/jabr.1994.1101
[12] Gerald J. Janusz, Algebraic number fields, Academic Press [A Subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973. Pure and Applied Mathematics, Vol. 55. · Zbl 0307.12001
[13] Bao-Ping Jia, Splitting of rank-one valuations, Comm. Algebra 19 (1991), no. 3, 777 – 794. · Zbl 0723.12007 · doi:10.1080/00927879108824169
[14] Masayoshi Nagata, Tadasi Nakayama, and Tosiro Tuzuku, On an existence lemma in valuation theory, Nagoya Math. J. 6 (1953), 59 – 61. · Zbl 0052.03202
[15] Donald Passman, Permutation groups, W. A. Benjamin, Inc., New York-Amsterdam, 1968. · Zbl 1270.20001
[16] Jean-Pierre Serre, Linear representations of finite groups, Springer-Verlag, New York-Heidelberg, 1977. Translated from the second French edition by Leonard L. Scott; Graduate Texts in Mathematics, Vol. 42. · Zbl 0355.20006
[17] W. B. Stewart, Largely fixed point free groups, (unpublished).
[18] Michio Suzuki, Group theory. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 248, Springer-Verlag, New York, 1986. Translated from the Japanese. · Zbl 0586.20001
[19] Roger Wiegand, Picard groups of singular affine curves over a perfect field, Math. Z. 200 (1989), no. 3, 301 – 311. · Zbl 0637.14006 · doi:10.1007/BF01215648
[20] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math. Phys. 3 (1892), no. 1, 265 – 284 (German). · JFM 24.0176.02 · doi:10.1007/BF01692444
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.