×

An entropy-stable discontinuous Galerkin approximation of the Spalart-Allmaras turbulence model for the compressible Reynolds averaged Navier-Stokes equations. (English) Zbl 07518083

Summary: We present an entropy-stable formulation for the compressible Reynolds Averaged Navier-Stokes (RANS) Discontinuous Galerkin (DG) equations and the Spalart-Allmaras one-equation closure. The model is designed to satisfy an entropy law, which includes free- and no-slip wall boundary conditions. We then construct a high-order DG approximation of the model that satisfies the summation-by-parts simultaneous-approximation-term (SBP-SAT) property. With the help of a discrete stability analysis, we construct two approximations: a kinetic energy preserving scheme based on Pirozzoli’s two-point flux and a thermodynamic entropy conserving one based on Chandrashekar’s split-form. The schemes are applicable to, and the stability proofs hold for, three-dimensional unstructured meshes with curvilinear hexahedral elements. We test the convergence of the schemes on a manufactured solution for increasing polynomial orders and mesh refinement levels, to then assess their numerical stability by propagating a flow from a random initial condition, and finally solve the flow around a two-dimensional flat plate and a NACA 0012 airfoil, comparing numerical results with those available in the literature. The proposed schemes are entropy-stable, and provide accurate solutions for the selected test cases.

MSC:

65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems
76Mxx Basic methods in fluid mechanics
76Fxx Turbulence

References:

[1] Wang, Z. J.; Fidkowski, K.; Abgrall, R.; Bassi, F.; Caraeni, D.; Cary, A.; Deconinck, H.; Hartmann, R.; Hillewaert, K.; Huynh, H. T., High-order CFD methods: current status and perspective, Int. J. Numer. Methods Fluids, 72, 8, 811-845 (2013) · Zbl 1455.76007
[2] Cockburn, B.; Shu, C.-W., The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal., 35, 6, 2440-2463 (1998) · Zbl 0927.65118
[3] Ferrer, E.; Willden, R. H.J., A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations, Comput. Fluids, 46, 1, 224-230 (2011) · Zbl 1431.76011
[4] Ferrer, E.; Willden, R., A high order discontinuous Galerkin-Fourier incompressible 3D Navier-Stokes solver with rotating sliding meshes, J. Comput. Phys., 231, 21, 7037-7056 (2012) · Zbl 1284.35311
[5] Ferrer, E., An interior penalty stabilised incompressible discontinuous Galerkin-Fourier solver for implicit Large Eddy Simulations, J. Comput. Phys., 348, 754-775 (2017) · Zbl 1380.76018
[6] Fehn, N.; Kronbichler, M.; Lehrenfeld, C.; Lube, G.; Schroeder, P. W., High-order DG solvers for underresolved turbulent incompressible flows: a comparison of L2 and H(div) methods, Int. J. Numer. Methods Fluids, 91, 11, 533-556 (2019)
[7] Kompenhans, M.; Rubio, G.; Ferrer, E.; Valero, E., Adaptation strategies for high order discontinuous Galerkin methods based on Tau-estimation, J. Comput. Phys., 306, 216-236 (2016) · Zbl 1352.65353
[8] Kompenhans, M.; Rubio, G.; Ferrer, E.; Valero, E., Comparisons of p-adaptation strategies based on truncation– and discretisation-errors for high order discontinuous Galerkin methods, Comput. Fluids, 139, 36-46 (2016), 13th USNCCM International Symposium of High-Order Methods for Computational Fluid Dynamics - a special issue dedicated to the 60th birthday of Professor David Kopriva · Zbl 1390.76329
[9] Manzanero, J.; Ferrer, E.; Rubio, G.; Valero, E., Design of a Smagorinsky Spectral Vanishing Viscosity turbulence model for discontinuous Galerkin methods, Comput. Fluids, Article 104440 pp. (2020) · Zbl 1519.76095
[10] Rueda-Ramírez, A. M.; Manzanero, J.; Ferrer, E.; Rubio, G.; Valero, E., A p-multigrid strategy with anisotropic p-adaptation based on truncation errors for high-order discontinuous Galerkin methods, J. Comput. Phys., 378, 209-233 (2019) · Zbl 1416.65357
[11] Black, K., A conservative spectral element method for the approximation of compressible fluid flow, Kybernetika, 35, 1, 133-146 (1999) · Zbl 1274.76271
[12] Fisher, T. C.; Carpenter, M. H., High-order entropy stable finite difference schemes for nonlinear conservation laws: finite domains, J. Comput. Phys., 252, 518-557 (2013) · Zbl 1349.65293
[13] Carpenter, M. H.; Fisher, T. C.; Nielsen, E. J.; Frankel, S. H., Entropy stable spectral collocation schemes for the Navier-Stokes equations: discontinuous interfaces, SIAM J. Sci. Comput., 36, 5, B835-B867 (2014) · Zbl 1457.65140
[14] Chan, J.; Del Rey Fernández, D. C.; Carpenter, M. H., Efficient entropy stable Gauss collocation methods, SIAM J. Sci. Comput., 41, 5, A2938-A2966 (2019) · Zbl 1435.65172
[15] Del Rey Fernández, D. C.; Hicken, J. E.; Zingg, D. W., Review of summation-by-parts operators with simultaneous approximation terms for the numerical solution of partial differential equations, Comput. Fluids, 95, 171-196 (2014) · Zbl 1390.65064
[16] Svärd, M.; Nordström, J., Review of summation-by-parts schemes for initial-boundary-value problems, J. Comput. Phys., 268, 17-38 (2014) · Zbl 1349.65336
[17] Gassner, G. J.; Winters, A. R.; Kopriva, D. A., Split form nodal discontinuous Galerkin schemes with summation-by-parts property for the compressible Euler equations, J. Comput. Phys., 327, 39-66 (2016) · Zbl 1422.65280
[18] Crean, J.; Hicken, J. E.; Del Rey Fernández, D. C.; Zingg, D. W.; Carpenter, M. H., Entropy-stable summation-by-parts discretization of the Euler equations on general curved elements, J. Comput. Phys., 356, 410-438 (2018) · Zbl 1380.76080
[19] Shadpey, S.; Zingg, D. W., Entropy-stable multidimensional summation-by-parts discretizations on hp-adaptive curvilinear grids for hyperbolic conservation laws, J. Sci. Comput., 82, 3, 1-46 (2020) · Zbl 07197755
[20] Winters, A. R.; Gassner, G. J., Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations, J. Comput. Phys., 304, 72-108 (2016) · Zbl 1349.76407
[21] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., A free-energy stable nodal discontinuous Galerkin approximation with summation-by-parts property for the Cahn-Hilliard equation, J. Comput. Phys., 403, Article 109072 pp. (2020) · Zbl 1453.65338
[22] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., Entropy-stable discontinuous Galerkin approximation with summation-by-parts property for the incompressible Navier-Stokes/Cahn-Hilliard system, J. Comput. Phys., Article 109363 pp. (2020) · Zbl 07505633
[23] Gassner, G. J.; Winters, A. R.; Hindenlang, F. J.; Kopriva, D. A., The BR1 scheme is stable for the compressible Navier-Stokes equations, J. Sci. Comput., 77, 1, 154-200 (2018) · Zbl 1407.65189
[24] Manzanero, J.; Rubio, G.; Kopriva, D. A.; Ferrer, E.; Valero, E., An entropy-stable discontinuous Galerkin approximation for the incompressible Navier-Stokes equations with variable density and artificial compressibility, J. Comput. Phys., 408, Article 109241 pp. (2020) · Zbl 07505602
[25] Bassi, F.; Crivellini, A.; Rebay, S.; Savini, M., Discontinuous Galerkin solution of the Reynolds-averaged Navier-Stokes and \(k - \omega\) turbulence model equations, Comput. Fluids, 34, 4-5, 507-540 (2005) · Zbl 1138.76043
[26] Wilcox, D. C., Turbulence Modeling for CFD, vol. 2 (1998), DCW industries La Canada, CA
[27] Menter, F. R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 8, 1598-1605 (1994)
[28] Gerolymos, G. A.; Vallet, I., Implicit computation of three-dimensional compressible Navier-Stokes equations using \(k - \epsilon\) closure, AIAA J., 34, 7, 1321-1330 (1996) · Zbl 0906.76066
[29] Nguyen, N.; Persson, P.; Peraire, J., RANS solutions using high order discontinuous Galerkin methods, (45th AIAA Aerospace Science Meeting and Exhibit. 45th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada (2007))
[30] Oliver, T.; Darmofal, D., An unsteady adaptation algorithm for discontinuous Galerkin discretizations of the RANS equations, (18th AIAA Computational Fluid Dynamics Conference. 18th AIAA Computational Fluid Dynamics Conference, Reno, Nevada (2007))
[31] Landmann, B.; Kessler, M.; Wagner, S.; Krämer, E., A parallel high-order discontinuous Galerkin code for laminar and turbulent flows, Comput. Fluids, 37, 4, 427-438 (2008) · Zbl 1237.76071
[32] Crivellini, A.; D’Alessandro, V.; Bassi, F., A Spalart-Allmaras turbulence model implementation in a discontinuous Galerkin solver for incompressible flows, J. Comput. Phys., 241, 388-415 (2013) · Zbl 1349.76194
[33] Bassi, F.; Ghidoni, A.; Perbellini, A.; Rebay, S.; Crivellini, A.; Franchina, N.; Savini, M., A high-order discontinuous Galerkin solver for the incompressible RANS and \(k - \omega\) turbulence model equations, Comput. Fluids, 98, 54-68 (2014), 12th USNCCM mini-symposium of High-Order Methods for Computational Fluid Dynamics - a special issue dedicated to the 80th birthday of Professor Antony Jameson · Zbl 1391.76301
[34] Tiberga, M.; Hennink, A.; Kloosterman, J. L.; Lathouwers, D., A high-order discontinuous Galerkin solver for the incompressible RANS equations coupled to the \(k - \epsilon\) turbulence model, Comput. Fluids, 212, Article 104710 pp. (2020) · Zbl 1502.76063
[35] Bassi, F.; Botti, L.; Colombo, A.; Ghidoni, A.; Rebay, S., Implementation of an explicit algebraic Reynolds stress model in an implicit very high-order discontinuous Galerkin solver, (Azaïez, M.; El Fekih, H.; Hesthaven, J. S., Spectral and High Order Methods for Partial Differential Equations. Spectral and High Order Methods for Partial Differential Equations, ICOSAHOM 2012 (2014), Springer International Publishing: Springer International Publishing Cham), 111-123 · Zbl 1417.76013
[36] Lorini, M.; Bassi, F.; Colombo, A.; Ghidoni, A.; Noventa, G., Discontinuous Galerkin solution of the RANS and \(k_l - k - \log(\omega)\) equations for natural and bypass transition, Comput. Fluids, Article 104767 pp. (2020) · Zbl 1521.76232
[37] Mateo-Gabín, A.; Manzanero, J.; Valero, E., An entropy stable spectral vanishing viscosity for discontinuous Galerkin schemes: application to shock capturing and LES models (2021)
[38] (2020), NASA’s Langley Research Center turbulence modelling resource site
[39] Schmitt, F. G., About Boussinesq’s turbulent viscosity hypothesis: historical remarks and a direct evaluation of its validity, C. R., Méc., 335, 9, 617-627 (2007) · Zbl 1211.76065
[40] Spalart, P.; Allmaras, S., A one-equation turbulence model for aerodynamic flows, (30th Aerospace Sciences Meeting and Exhibit (1992)), 439
[41] Ansys, I., ANSYS Fluent Theory Guide, release 15.0 (2013)
[42] Allmaras, S.; Johnson, F.; Spalart, P., Modifications and clarifications for the implementation of the Spalart-Allmaras turbulence model, (Seventh International Conference on Computational Fluid Dynamics, vol. ICCFD7 (2012)), 1-11
[43] Merriam, M. L., An entropy-based approach to nonlinear stability, (NASA Technical Memorandum, vol. 101 (1989)), 086
[44] Pirozzoli, S., Numerical methods for high-speed flows, Annu. Rev. Fluid Mech., 43, 163-194 (2011) · Zbl 1299.76103
[45] Chandrashekar, P., Kinetic energy preserving and entropy stable finite volume schemes for compressible Euler and Navier-Stokes equations, Commun. Comput. Phys., 14, 5, 1252-1286 (2013) · Zbl 1373.76121
[46] Gassner, G. J., A kinetic energy preserving nodal discontinuous Galerkin spectral element method, Int. J. Numer. Methods Fluids, 76, 1, 28-50 (2014) · Zbl 1455.76142
[47] Kopriva, D. A., A polynomial spectral calculus for analysis of DG spectral element methods, (Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016 (2017), Springer), 21-40 · Zbl 1382.65345
[48] Gassner, G. J., A skew-symmetric discontinuous Galerkin spectral element discretization and its relation to SBP-SAT finite difference methods, SIAM J. Sci. Comput., 35, 3, A1233-A1253 (2013) · Zbl 1275.65065
[49] Kopriva, D. A., Metric identities and the discontinuous spectral element method on curvilinear meshes, J. Sci. Comput., 26, 3, 301 (2006) · Zbl 1178.76269
[50] Kopriva, D. A., Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers (2009), Springer Science & Business Media · Zbl 1172.65001
[51] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods: Fundamentals in Single Domains (2007), Springer Science & Business Media
[52] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131, 2, 267-279 (1997) · Zbl 0871.76040
[53] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (2013), Springer Science & Business Media
[54] Flad, D.; Gassner, G., On the use of kinetic energy preserving DG-schemes for Large Eddy Simulation, J. Comput. Phys., 350, 782-795 (2017) · Zbl 1380.76019
[55] Carlson, J.-R., Inflow/outflow boundary conditions with application to FUN3D (2011)
[56] Tadmor, E., Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems, Acta Numer., 12, 1, 451-512 (2003) · Zbl 1046.65078
[57] Fisher, T.; Carpenter, M.; Nordström, J.; Yamaleev, N.; Swanson, R., Discretely conservative finite-difference formulations for nonlinear conservation laws in split form: theory and boundary conditions, J. Comput. Phys., 234, 353-375 (2013) · Zbl 1284.65102
[58] Hindenlang, F. J.; Gassner, G. J.; Kopriva, D. A., Stability of wall boundary condition procedures for discontinuous Galerkin spectral element approximations of the compressible Euler equations (2019), preprint
[59] Witherden, F.; Jameson, A.; Zingg, D., Chapter 11 - The design of steady state schemes for computational aerodynamics, (Abgrall, R.; Shu, C.-W., Handbook of Numerical Methods for Hyperbolic Problems. Handbook of Numerical Methods for Hyperbolic Problems, Handbook of Numerical Analysis, vol. 18 (2017), Elsevier), 303-349 · Zbl 1366.76064
[60] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Dener, A.; Eijkhout, V.; Gropp, W. D.; Karpeyev, D.; Kaushik, D.; Knepley, M. G.; May, D. A.; McInnes, L. C.; Mills, R. T.; Munson, T.; Rupp, K.; Sanan, P.; Smith, B. F.; Zampini, S.; Zhang, H.; Zhang, H., PETSc Web page (2019)
[61] Mulder, W. A.; van Leer, B., Experiments with implicit upwind methods for the Euler equations, J. Comput. Phys., 59, 232-246 (1985) · Zbl 0584.76014
[62] Ceze, M.; Fidkowski, K., Pseudo-transient continuation, solution update methods, and CFL strategies for DG discretizations of the RANS-SA equations (2013)
[63] Gebremedhin, A. H.; Manne, F.; Pothen, A., What color is your Jacobian? Graph coloring for computing derivatives, SIAM Rev., 47, 4, 629-705 (2005) · Zbl 1076.05034
[64] Rueda-Ramírez, A. M.; Ferrer, E.; Kopriva, D. A.; Rubio, G.; Valero, E., A statically condensed discontinuous Galerkin spectral element method on Gauss-Lobatto nodes for the compressible Navier-Stokes equations, J. Comput. Phys., 426, Article 109953 pp. (2021) · Zbl 07510067
[65] Bassi, F.; Rebay, S., A high order discontinuous Galerkin method for compressible turbulent flows, (Cockburn, B.; Karniadakis, G. E.; Shu, C.-W., Discontinuous Galerkin Methods (2000), Springer: Springer Berlin, Heidelberg), 77-88 · Zbl 0991.76039
[66] Alhawwary, M.; Wang, Z., On the accuracy and stability of various DG formulations for diffusion (2018)
[67] Gassner, G.; Kopriva, D. A., A comparison of the dispersion and dissipation errors of Gauss and Gauss-Lobatto discontinuous Galerkin spectral element methods, SIAM J. Sci. Comput., 33, 5, 2560-2579 (2011) · Zbl 1255.65089
[68] Carpenter, M. H.; Kennedy, C. A., Fourth-order 2N-storage Runge-Kutta schemes (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.