×

Efficient boundary condition-enforced immersed boundary method for incompressible flows with moving boundaries. (English) Zbl 07513815

Summary: In this work, the original boundary condition-enforced immersed boundary method (IBM) [J. Wu and C. Shu, J. Comput. Phys. 228, No. 6, 1963–1979 (2009; Zbl 1243.76081); J. Comput. Phys. 229, No. 13, 5022–5042 (2010; Zbl 1346.76164)] is improved to efficiently simulate incompressible flows with moving boundaries. The original boundary condition-enforced IBM can accurately interpret the no-slip boundary condition but becomes computationally tedious in simulating moving boundary problems due to the assembly of a large matrix at every time step and the implicit resolving process. The computational complexity of \(O(N^a)\) grows significantly with the number of Lagrangian points \(N\) distributed on the immersed boundary. To alleviate these limitations, the conjugate gradient technique and the explicit technique are proposed to improve the efficiency of the boundary condition-enforced IBM. The IBM with the conjugate gradient technique fulfills the boundary condition in an iterative way with computational complexity of \(O(N^c)\), while the IBM with the explicit technique is a non-iterative approach based on error analysis with computational complexity of \(O(N^d)\). We also prove that the multi-direct forcing IBM [K. Luo et al., “Full-scale solutions to particle-laden flows: multidirect forcing and immersed boundary method”, Phys. Rev. E (3) 76, No. 6, Article ID 066709, 9.p (2007, doi:10.1103/PhysRevE.76.066709); Z. Wang, J. Fan and K. Luo, “Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles”, Int. J. Multiphase Flow 34, No. 3, 283–302 (2008; doi:10.1016/j.ijmultiphaseflow.2007.10.004)] which is another popular IBM, is essentially a gradient descent approach to implement the boundary condition-enforced IBM with computational complexity of \(O(N^b)\). Detailed analyses reveal \(2 = a > b > c > d = 1\), which implies the high efficiency of the improved versions of IBM, especially the explicit technique-based IBM with a linear computational complexity. For validation, the IBMs are coupled with D1Q4 lattice Boltzmann flux solver (LBFS) to simulate two-dimensional and three-dimensional flows with moving boundaries. The results show that the conjugate gradient technique-based IBM and the explicit technique-based IBM have computational complexities of \(O(N^{1.4})\) and \(O(N)\), respectively. Both of them have \(2^{\mathrm{nd}}\) order accuracy in space.

MSC:

76Mxx Basic methods in fluid mechanics
76Dxx Incompressible viscous fluids
65Mxx Numerical methods for partial differential equations, initial value and time-dependent initial-boundary value problems

Software:

Proteus
Full Text: DOI

References:

[1] Wu, J.; Shu, C., Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, J. Comput. Phys., 228, 1963-1979 (2009) · Zbl 1243.76081
[2] Wu, J.; Shu, C., An improved immersed boundary-lattice Boltzmann method for simulating three-dimensional incompressible flows, J. Comput. Phys., 229, 5022-5042 (2010) · Zbl 1346.76164
[3] Feng, Z.-G.; Michaelides, E. E., Proteus: a direct forcing method in the simulations of particulate flows, J. Comput. Phys., 202, 20-51 (2005) · Zbl 1076.76568
[4] Lai, M.-C.; Peskin, C. S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160, 705-719 (2000) · Zbl 0954.76066
[5] Niu, X.; Shu, C.; Chew, Y.; Peng, Y., A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Phys. Lett. A, 354, 173-182 (2006) · Zbl 1181.76111
[6] Shu, C.; Liu, N.; Chew, Y.-T., A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder, J. Comput. Phys., 226, 1607-1622 (2007) · Zbl 1173.76395
[7] Luo, K.; Wang, Z.; Fan, J.; Cen, K., Full-scale solutions to particle-laden flows: multidirect forcing and immersed boundary method, Phys. Rev. E, 76, Article 066709 pp. (2007)
[8] Wang, Z.; Fan, J.; Luo, K., Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles, Int. J. Multiph. Flow, 34, 283-302 (2008)
[9] Wang, Y.; Shu, C.; Teo, C.; Wu, J., An immersed boundary-lattice Boltzmann flux solver and its applications to fluid-structure interaction problems, J. Fluids Struct., 54, 440-465 (2015)
[10] Dash, S.; Lee, T.; Lim, T.; Huang, H., A flexible forcing three dimension IB-LBM scheme for flow past stationary and moving spheres, Comput. Fluids, 95, 159-170 (2014) · Zbl 1391.76603
[11] Tian, F.-B.; Luo, H.; Zhu, L.; Liao, J. C.; Lu, X.-Y., An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments, J. Comput. Phys., 230, 7266-7283 (2011) · Zbl 1327.76106
[12] Wang, Y.; Shu, C.; Yang, L.; Teo, C., An immersed boundary-lattice Boltzmann flux solver in a moving frame to study three-dimensional freely falling rigid bodies, J. Fluids Struct., 68, 444-465 (2017)
[13] Peskin, C. S., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 252-271 (1972) · Zbl 0244.92002
[14] Peskin, C. S., The immersed boundary method, Acta Numer., 11, 479-517 (2002) · Zbl 1123.74309
[15] Yang, X.; Zhang, X.; Li, Z.; He, G.-W., A smoothing technique for discrete delta functions with application to immersed boundary method in moving boundary simulations, J. Comput. Phys., 228, 7821-7836 (2009) · Zbl 1391.76590
[16] Goldstein, D.; Handler, R.; Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105, 354-366 (1993) · Zbl 0768.76049
[17] Fadlun, E.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161, 35-60 (2000) · Zbl 0972.76073
[18] Mohd-Yusof, J., Combined immersed boundaries/B-splines methods for simulations of flows in complex geometries (1997), NASA Ames, Stanford University, CTR Annual Research Briefs
[19] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209, 448-476 (2005) · Zbl 1138.76398
[20] Wang, Y.; Shu, C.; Yang, L., Boundary condition-enforced immersed boundary-lattice Boltzmann flux solver for thermal flows with Neumann boundary conditions, J. Comput. Phys., 306, 237-252 (2016) · Zbl 1351.76253
[21] De Rosis, A.; Falcucci, G.; Ubertini, S.; Ubertini, F., Aeroelastic study of flexible flapping wings by a coupled lattice Boltzmann-finite element approach with immersed boundary method, J. Fluids Struct., 49, 516-533 (2014)
[22] Delouei, A. A.; Nazari, M.; Kayhani, M.; Succi, S., Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method, Phys. Rev. E, 89, Article 053312 pp. (2014)
[23] Favier, J.; Revell, A.; Pinelli, A., A lattice Boltzmann-immersed boundary method to simulate the fluid interaction with moving and slender flexible objects, J. Comput. Phys., 261, 145-161 (2014) · Zbl 1349.76679
[24] Huang, R.; Wu, H., An immersed boundary-thermal lattice Boltzmann method for solid-liquid phase change, J. Comput. Phys., 277, 305-319 (2014) · Zbl 1349.82054
[25] Li, C.; Wang, L.-P., An immersed boundary-discrete unified gas kinetic scheme for simulating natural convection involving curved surfaces, Int. J. Heat Mass Transf., 126, 1059-1070 (2018)
[26] Li, Z.; Favier, J.; d’Ortona, U.; Poncet, S., An immersed boundary-lattice Boltzmann method for single-and multi-component fluid flows, J. Comput. Phys., 304, 424-440 (2016) · Zbl 1349.76708
[27] Pepona, M.; Favier, J., A coupled immersed boundary-lattice Boltzmann method for incompressible flows through moving porous media, J. Comput. Phys., 321, 1170-1184 (2016) · Zbl 1349.76727
[28] Pinelli, A.; Naqavi, I.; Piomelli, U.; Favier, J., Immersed-boundary methods for general finite-difference and finite-volume Navier-Stokes solvers, J. Comput. Phys., 229, 9073-9091 (2010) · Zbl 1427.76053
[29] Yang, L.; Shu, C.; Wu, J., A hybrid lattice Boltzmann flux solver for simulation of viscous compressible flows, Adv. Appl. Math. Mech., 8, 887-910 (2016) · Zbl 1488.76096
[30] Yang, L.; Shu, C.; Wu, J., Extension of lattice Boltzmann flux solver for simulation of 3D viscous compressible flows, Comput. Math. Appl., 71, 2069-2081 (2016) · Zbl 1443.65170
[31] Yang, L.; Shu, C.; Wu, J., A moment conservation-based non-free parameter compressible lattice Boltzmann model and its application for flux evaluation at cell interface, Comput. Fluids, 79, 190-199 (2013) · Zbl 1284.76313
[32] Saad, Y., Iterative Methods for Sparse Linear Systems (2003), SIAM · Zbl 1002.65042
[33] Householder, A. S., Principles of Numerical Analysis (2006), Courier Corporation · Zbl 1152.65002
[34] Powell, M. J.D., Restart procedures for the conjugate gradient method, Math. Program., 12, 241-254 (1977) · Zbl 0396.90072
[35] Bender, M. A.; Brodal, G. S.; Fagerberg, R.; Jacob, R.; Vicari, E., Optimal sparse matrix dense vector multiplication in the I/O-model, Theory Comput. Syst., 47, 934-962 (2010) · Zbl 1213.68069
[36] Chen, Z.; Shu, C.; Tan, D., Immersed boundary-simplified lattice Boltzmann method for incompressible viscous flows, Phys. Fluids, 30, Article 053601 pp. (2018)
[37] Wang, Y.; Shu, C.; Wang, T.; Valdivia y. Alvarado, P., A generalized minimal residual method-based immersed boundary-lattice Boltzmann flux solver coupled with finite element method for non-linear fluid-structure interaction problems, Phys. Fluids, 31, Article 103603 pp. (2019)
[38] Chen, D.-J.; Lin, K.-H.; Lin, C.-A., Immersed boundary method based lattice Boltzmann method to simulate 2D and 3D complex geometry flows, Int. J. Mod. Phys. C, 18, 585-594 (2007) · Zbl 1206.76044
[39] Dennis, S.; Chang, G.-Z., Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, J. Fluid Mech., 42, 471-489 (1970) · Zbl 0193.26202
[40] Fornberg, B., A numerical study of steady viscous flow past a circular cylinder, J. Fluid Mech., 98, 819-855 (1980) · Zbl 0428.76032
[41] He, X.; Doolen, G., Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder, J. Comput. Phys., 134, 306-315 (1997) · Zbl 0886.76072
[42] Gresho, P. M.; Chan, S. T.; Lee, R. L.; Upson, C. D., A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations. Part 2: applications, Int. J. Numer. Methods Fluids, 4, 619-640 (1984) · Zbl 0559.76031
[43] Liu, C.; Zheng, X.; Sung, C., Preconditioned multigrid methods for unsteady incompressible flows, J. Comput. Phys., 139, 35-57 (1998) · Zbl 0908.76064
[44] Saiki, E.; Biringen, S., Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method, J. Comput. Phys., 123, 450-465 (1996) · Zbl 0848.76052
[45] Lee, J.; You, D., An implicit ghost-cell immersed boundary method for simulations of moving body problems with control of spurious force oscillations, J. Comput. Phys., 233, 295-314 (2013)
[46] Martins, D. M.; Albuquerque, D. M.; Pereira, J. C., Continuity constrained least-squares interpolation for SFO suppression in immersed boundary methods, J. Comput. Phys., 336, 608-626 (2017)
[47] Guilmineau, E.; Queutey, P., A numerical simulation of vortex shedding from an oscillating circular cylinder, J. Fluids Struct., 16, 773-794 (2002)
[48] Wan, D.; Turek, S., Direct numerical simulation of particulate flow via multigrid FEM techniques and the fictitious boundary method, Int. J. Numer. Methods Fluids, 51, 531-566 (2006) · Zbl 1145.76406
[49] Dong, G.-J.; Lu, X.-Y., Characteristics of flow over traveling wavy foils in a side-by-side arrangement, Phys. Fluids, 19, Article 057107 pp. (2007) · Zbl 1146.76370
[50] Maertens, A. P.; Gao, A.; Triantafyllou, M. S., Optimal undulatory swimming for a single fish-like body and for a pair of interacting swimmers, J. Fluid Mech., 813, 301-345 (2017) · Zbl 1383.76582
[51] Sun, P.-N.; Colagrossi, A.; Zhang, A.-M., Numerical simulation of the self-propulsive motion of a fishlike swimming foil using the δ+-SPH model, Theor. Appl. Mech. Lett., 8, 115-125 (2018)
[52] Videler, J. J., Fish Swimming (1993), Springer Science & Business Media
[53] McHenry, M. J.; Azizi, E.; Strother, J. A., The hydrodynamics of locomotion at intermediate Reynolds numbers: undulatory swimming in ascidian larvae (Botrylloides sp.), J. Exp. Biol., 206, 327-343 (2003)
[54] Birch, J. M.; Dickinson, M. H., The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight, J. Exp. Biol., 206, 2257-2272 (2003)
[55] Dickinson, M. H.; Lehmann, F.-O.; Gotz, K., The active control of wing rotation by Drosophila, J. Exp. Biol., 182, 173-189 (1993)
[56] Dickinson, M. H.; Lehmann, F.-O.; Sane, S. P., Wing rotation and the aerodynamic basis of insect flight, Science, 284, 1954-1960 (1999)
[57] Sane, S. P.; Dickinson, M. H., The control of flight force by a flapping wing: lift and drag production, J. Exp. Biol., 204, 2607-2626 (2001)
[58] Gilmanov, A.; Sotiropoulos, F., A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies, J. Comput. Phys., 207, 457-492 (2005) · Zbl 1213.76135
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.