×

Product integration-collocation methods for noncompact integral operator equations. (English) Zbl 0639.65074

This paper discusses the numerical solutions to a class of second-kind integral equations corresponding to the 2-D Laplace equation with corners on the boundary. The authors prove optimal orders of convergence of graded meshes based upon simple modifications on the underlying basis functions. Test examples point out that such modifications are of fundamental importance in some cases of polynomial collocation techniques.
Reviewer: J.C.F.Telles

MSC:

65R20 Numerical methods for integral equations
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
45E05 Integral equations with kernels of Cauchy type
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
35C15 Integral representations of solutions to PDEs
Full Text: DOI

References:

[1] K. E. Atkinson, A Survey of Numerical Methods for the Solution of Integral Equations of the Second Kind, SIAM, Philadelphia, Pa., 1976. · Zbl 0353.65069
[2] K. Atkinson and F. de Hoog, The numerical solution of Laplace’s equation on a wedge, IMA J. Numer. Anal. 4 (1984), no. 1, 19 – 41. · Zbl 0561.65083 · doi:10.1093/imanum/4.1.19
[3] Carl de Boor, Good approximation by splines with variable knots, Spline functions and approximation theory (Proc. Sympos., Univ. Alberta, Edmonton, Alta., 1972) Birkhäuser, Basel, 1973, pp. 57 – 72. Internat. Ser. Numer. Math., Vol. 21.
[4] Carl de Boor, A practical guide to splines, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York-Berlin, 1978. · Zbl 0406.41003
[5] C. A. Brebbia, J. C. F. Telles & L. C. Wrobel, Boundary Element Techniques, Springer-Verlag, Berlin and New York, 1984. · Zbl 0556.73086
[6] H. G. Burchard, On the degree of convergence of piecewise polynomial approximation on optimal meshes, Trans. Amer. Math. Soc. 234 (1977), no. 2, 531 – 559. · Zbl 0366.41009
[7] G. A. Chandler, Superconvergence of Numerical Solutions to Second Kind Integral Equations, Thesis, Australian National University, 1979.
[8] G. A. Chandler, Galerkin’s method for boundary integral equations on polygonal domains, J. Austral. Math. Soc. Ser. B 26 (1984), no. 1, 1 – 13. · Zbl 0559.65083 · doi:10.1017/S033427000000429X
[9] G. A. Chandler, Superconvergent approximations to the solution of a boundary integral equation on polygonal domains, SIAM J. Numer. Anal. 23 (1986), no. 6, 1214 – 1229. · Zbl 0614.65127 · doi:10.1137/0723082
[10] G. A. Chandler & I. G. Graham, Product Integration-Collocation Methods for Non-Compact Integral Operator Equations, Research Report CMA-R41-85, Centre for Mathematical Analysis, Australian National University, Canberra, 1985.
[11] Martin Costabel and Ernst Stephan, Boundary integral equations for mixed boundary value problems in polygonal domains and Galerkin approximation, Mathematical models and methods in mechanics, Banach Center Publ., vol. 15, PWN, Warsaw, 1985, pp. 175 – 251. · Zbl 0655.65129
[12] Martin Costabel, Boundary integral operators on curved polygons, Ann. Mat. Pura Appl. (4) 133 (1983), 305 – 326. · Zbl 0533.45009 · doi:10.1007/BF01766023
[13] M. L. Dow and David Elliott, The numerical solution of singular integral equations over (-1,1), SIAM J. Numer. Anal. 16 (1979), no. 1, 115 – 134. · Zbl 0399.65094 · doi:10.1137/0716009
[14] R. De Vore & K. Scherer, ”Variable knot, variable degree spline approximation to \( {x^\beta }\),” in Quantitative Approximation , Academic Press, New York, 1980, pp. 121-131.
[15] I. G. Graham and G. A. Chandler, High-order methods for linear functionals of solutions of second kind integral equations, SIAM J. Numer. Anal. 25 (1988), no. 5, 1118 – 1137. · Zbl 0661.65137 · doi:10.1137/0725064
[16] M. A. Jaswon & G. I. Symm, Integral Equation Methods in Potential Theory and Electrostatics, Academic Press, New York, 1977. · Zbl 0414.45001
[17] V. A. Kondrat\(^{\prime}\)ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209 – 292 (Russian).
[18] M. G. Krein, Integral Equations on a Half Line with Kernel Depending Upon the Difference of the Arguments, Amer. Math. Soc. Transl., vol. 22, Amer. Math. Soc., Providence, R.I., 1963, pp. 163-288. · Zbl 0119.09601
[19] U. Lamp, T. Schleicher, E. Stephan, and W. L. Wendland, Galerkin collocation for an improved boundary element method for a plane mixed boundary value problem, Computing 33 (1984), no. 3-4, 269 – 296 (English, with German summary). · Zbl 0546.65080 · doi:10.1007/BF02242273
[20] W. McLean, Boundary Integral Methods for the Laplace Equation, Thesis, Australian National University, Canberra, 1985. · Zbl 0588.65077
[21] John R. Rice, On the degree of convergence of nonlinear spline approximation, Approximations with Special Emphasis on Spline Functions (Proc. Sympos. Univ. of Wisconsin, Madison, Wis., 1969) Academic Press, New York, 1969, pp. 349 – 365.
[22] Claus Schneider, Product integration for weakly singular integral equations, Math. Comp. 36 (1981), no. 153, 207 – 213. · Zbl 0474.65095
[23] Ian H. Sloan, A review of numerical methods for Fredholm equations of the second kind, Application and numerical solution of integral equations (Proc. Sem., Australian Nat. Univ., Canberra, 1978) Monographs Textbooks Mech. Solids Fluids: Mech. Anal., vol. 6, Nijhoff, The Hague, 1980, pp. 51 – 74.
[24] I. H. Sloan and A. Spence, Projection methods for integral equations on the half-line, IMA J. Numer. Anal. 6 (1986), no. 2, 153 – 172. · Zbl 0593.65095 · doi:10.1093/imanum/6.2.153
[25] I. N. Sneddon & S. C. Das, ”The stress intensity factor at the tip of an edge crack in an elastic half plane,” Internat. J. Engrg. Sci., v. 9, 1971, pp. 25-36. · Zbl 0218.73107
[26] I. N. Sneddon and M. Lowengrub, Crack problems in the classical theory of elasticity, John Wiley & Sons, Inc., New York-London-Sydney, 1969. · Zbl 0201.26702
[27] M. P. Stallybrass, A pressurized crack in the form of a cross, Quart. J. Mech. Appl. Math. 23 (1970), 35 – 48. · Zbl 0194.26701 · doi:10.1093/qjmam/23.1.35
[28] M. P. Stallybrass, A crack perpendicular to an elastic half-plane, Internat. J. Engrg. Sci. 8 (1970), 351 – 362 (English, with French, German, Italian and Russian summaries). · Zbl 0197.21603 · doi:10.1016/0020-7225(70)90073-X
[29] Frank Stenger, Numerical methods based on Whittaker cardinal, or sinc functions, SIAM Rev. 23 (1981), no. 2, 165 – 224. · Zbl 0461.65007 · doi:10.1137/1023037
[30] W. L. Wendland, On some mathematical aspects of boundary element methods for elliptic problems, The mathematics of finite elements and applications, V (Uxbridge, 1984) Academic Press, London, 1985, pp. 193 – 227.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.