×

The numerical solution of neutral functional differential equations by Adams predictor-corrector methods. (English) Zbl 0748.65057

The authors consider the initial value problem for a functional differential equation of neutral type \(y'(t)=f(t,y(.),y'(.))\) \(t\in[a,b]\), \(y(t)=g(t)\) for \(t\in[\tau,a]\), where \(\tau\leq a<b\), \(f\) is a Volterra operator and \(g\) is a prescribed initial function. An algorithm for this problem based on an unequal interval Adams-Bashforth, Adams-Moulton predictor corrector method with stepsize control and order changing strategy based on the estimation of local discretization error by Milne’s device is described. Numerical results for miscellaneous problems are presented.

MSC:

65L06 Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations
65L05 Numerical methods for initial value problems involving ordinary differential equations
65L50 Mesh generation, refinement, and adaptive methods for ordinary differential equations
34K40 Neutral functional-differential equations
Full Text: DOI

References:

[1] Al-Mutib, A. N., An explicit one-step method of Runge-Kutta type for solving delay differential equations, Utilitas Math., 31, 67-80 (1987) · Zbl 0627.65081
[2] Arndt, H., Numerical solution of retarded initial value problems: local and global error and stepsize control, Numer. Math., 43, 343-360 (1984) · Zbl 0518.65053
[3] Bellen, A.; Zennaro, M., Numerical solution of delay differential equations by uniform corrections to an implicit Runge-Kutta method, Numer. Math., 47, 301-316 (1985) · Zbl 0577.65064
[4] Brayton, R. K.; Gustavson, F. G.; Hachtel, G. D., A new efficient algorithm for solving differential-algebraic systems using implicit backward difference formulas, Proc. IEEE, 60, 98-108 (1972)
[5] Bock, H. G.; Schlöder, J., Numerical solution of retarded differential equations with statedependent time legs, Z. Angew. Math. Mech., 61, 269-271 (1981) · Zbl 0481.65041
[6] Brunner, H.; Lambert, J. D., Stability of numerical methods for Volterra integro-differential equations, Computing, 12, 75-89 (1974) · Zbl 0282.65088
[7] de Gee, M., Linear multistep methods for functional differential equations, Math. Comp., 48, 633-649 (1987) · Zbl 0628.65053
[8] Enright, W. H., A new error control for initial-value solvers, (Report 122 (1986), Department of Mathematics University of Manchester: Department of Mathematics University of Manchester Manchester) · Zbl 0674.65060
[9] Enright, W. H., Analysis of error control strategies for continuous Runge-Kutta methods, (Report 205/87 (1987), Department of Computer Science, University of Toronto: Department of Computer Science, University of Toronto Toronto, Ont) · Zbl 0676.65073
[10] Gear, C. W., Numerical Initial Value Problems in Ordinary Differential Equations (1972), Prentice-Hall: Prentice-Hall Englewood Cliffs, NJ · Zbl 0173.44403
[11] Gear, C. W.; Tu, K. W., The effect of variable mesh size on the stability of multistep methods, SIAM J. Numer. Anal., 11, 1025-1043 (1974) · Zbl 0292.65041
[12] Gear, C. W.; Watanabe, D. S., Stability and convergence of variable order multistep methods, SIAM J. Numer. Anal., 11, 1044-1058 (1974) · Zbl 0294.65041
[13] Grigorieff, R. D., Stability of multistep methods on variable grids, Numer. Math., 42, 359-377 (1983) · Zbl 0554.65051
[14] Hall, G., Implementation of linear multistep methods, (Hall, G.; Watts, J. M., Modern Numerical Methods for Ordinary Differential Equations (1976), Clarendon Press: Clarendon Press Oxford), 86-104 · Zbl 0348.65064
[15] Higham, D. J., Robust defect control with Runge-Kutta schemes, (Report 150 (1987), Department of Mathematics, University of Manchester: Department of Mathematics, University of Manchester Manchester) · Zbl 0682.65033
[16] Higham, D. J., Defect estimation in Adams PECE codes, (Report 154 (1988), Department of Mathematics, University of Manchester: Department of Mathematics, University of Manchester Manchester) · Zbl 0676.65082
[17] Jackiewicz, Z., One-step methods of any order for neutral functional differential equations, SIAM J. Numer. Anal., 21, 486-511 (1984) · Zbl 0562.65056
[18] Jackiewicz, Z., Quasilinear multistep methods and variable step predictor-corrector methods for nuetral functional differential equations, SIAM J. Numer. Anal., 23, 423-452 (1986) · Zbl 0602.65056
[19] Jackiewicz, Z., Variable-step variable-order algorithm for the numerical solution of neutral functional differential equations, Appl. Numer. Math., 3, 317-329 (1987) · Zbl 0626.65072
[20] Jackiewicz, Z., One step methods for neutral delay-differential equations with state dependent delays, Zastos. Mat., 20, 445-463 (1990) · Zbl 0739.65065
[21] Z. Jackiewicz, Remark on global error estimation for functional differential equations, Manuscript.; Z. Jackiewicz, Remark on global error estimation for functional differential equations, Manuscript. · Zbl 0536.65063
[22] Kamont, Z.; Kwapisz, M., On the Cauchy problem for differential-delay equations in a Banach space, Math. Nachr., 74, 173-190 (1976) · Zbl 0288.34069
[23] Kappel, F.; Kunisch, K., Spline approximations for neutral functional-differential equations, SIAM J. Numer. Anal., 18, 1058-1080 (1981) · Zbl 0511.65053
[24] Krogh, F. T., Algorithms for changing the step size, SIAM J. Numer. Anal., 10, 949-965 (1973) · Zbl 0266.65052
[25] Lapidus, L.; Seifeld, J. H., Numerical Solution of Ordinary Differential Equations (1971), Academic Press: Academic Press New York · Zbl 0217.21601
[26] März, R., Zur Stabilität und Konsistenz variabler Verfahren, (Strehmel, K., Numer. Bhdlg. von Dgln. (1981), Wiss. Beiträge der Martin-Luther-Universität Halle-Wittenberg), 87-91
[27] Neves, K. W., Automatic integration of functional differential equations: an approach, ACM Trans. Math. Software, 1, 357-368 (1975) · Zbl 0315.65045
[28] Neves, K. W., Algorithm 497. Automatic integration of functional differential equations [D2], ACM Trans. Math. Software, 1, 369-371 (1975) · Zbl 0313.65052
[29] Nordsieck, A., On the numerical integration of ordinary differential equations, Math. Comp., 16, 22-49 (1962) · Zbl 0105.31902
[30] Oberle, H. J.; Pesch, H. J., Numerical treatment of delay differential equations by Hermite interpolation, Numer. Math., 37, 235-255 (1981) · Zbl 0469.65057
[31] Oppelstrup, J., The RKFHB4 method for delay-differential equations, (Bulirsch, R.; Grigorieff, R. D., Numerical Treatment of Differential Equations. Numerical Treatment of Differential Equations, Lecture Notes in Mathematics, 631 (1978), Springer: Springer New York), 133-146 · Zbl 0374.65039
[32] Piotrowski, P., Stability, consistency and convergence of variable \(K\)-step methods for numerical integration of large systems of ordinary differential equations, Proceedings Conference on the Numerical Solution of Differential Equations, 221-227 (1969) · Zbl 0191.16401
[33] Shampine, L. F.; Gordon, M. K., Computer Solution of Ordinary Differential Equations, The Initial Value Problem (1975), Freeman: Freeman San Francisco, CA · Zbl 0347.65001
[34] Tavernini, L., Numerical methods for Volterra functional differential equations, (Doctoral Thesis (1969), Department of Mathematics, University of Wisconsin: Department of Mathematics, University of Wisconsin Madison, WI) · Zbl 0790.68114
[35] Tavernini, L., Linear multistep methods for the numerical solution of Volterra functional differential equations, Appl. Anal., 1, 169-185 (1973) · Zbl 0291.65020
[36] Tavernini, L., Fondas user guide (1985), Division of Mathematics, Computer Science and System Design, University of Texas at San Antonio: Division of Mathematics, Computer Science and System Design, University of Texas at San Antonio San Antonio, TX
[37] Tavernini, L., CTMS user guide (1987), Division of Mathematics, Computer Science and Systems Design, University of Texas at San Antonio: Division of Mathematics, Computer Science and Systems Design, University of Texas at San Antonio San Antonio, TX
[38] Tu, K. W., Stability and convergence of general multistep and multivalue methods with variable step size, (Doctoral Thesis (1972), Department of Computer Science, University of Illinois: Department of Computer Science, University of Illinois Urbana-Champaign, IL)
[39] Weiner, R.; Strehmel, K., A type insensitive code for delay differential equations based on adaptive and explicit Runge-Kutta interpolation methods, Computing, 40, 255-265 (1988) · Zbl 0662.65072
[40] Zlatev, Z., Stability properties of variable stepsize variable formula methods, Numer. Math., 31, 175-182 (1978) · Zbl 0373.65036
[41] Zlatev, Z., Zero-stability properties of the three-ordinate variable stepsize variable formula methods, Numer. Math., 37, 157-166 (1981) · Zbl 0475.65041
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.