×

The space of Pettis integrable functions is barrelled. (English) Zbl 0747.46026

Let \((\Omega,\Sigma,\mu)\) be a measure space with finite measure and \(X\) a Banach space. A weakly \(\mu\)-measurable function \(f:\Omega\to X\) is Pettis integrable if \(\langle x^*,f(\centerdot)\rangle\in L_ 1(\mu)\) for each \(x^*\in X^*\) and if for every \(A\in\Sigma\) there is an element \(\int_ Afd\mu\) in \(X\) — the Pettis integral of \(f\) over \(A\) - – such that \(\langle x^*,\int_ Afd\mu\rangle=\int_ A\langle x^*,f(\centerdot)\rangle d\mu\) for all \(x^*\in X^*\). On the space \({\mathcal P}(\mu,X)\) of all Pettis integrable functions \(\Omega\to X\), a norm is given by \[ \| f\|:=\sup_{x^*\in B_{X^*}}\int_ \Omega|\langle x^*,f(\centerdot)\rangle | d\mu, \] but Banach space is far away. It is in fact known that if \(\mu\) doesn’t have any atoms then \({\mathcal P}(\mu,X)\) is only complete when \(X\) is finite dimensional.
However, the main result of this paper asserts that \({\mathcal P}(\mu,X)\) is always barrelled. It is obtained as a consequence of a theorem on certain Boolean algebras of projections in general locally convex spaces. There are also some interesting applications to spaces \(L_ p(X)\) of Bochner integrable functions in a normed space \(X\). If \(1\leq p<\infty\), then \(L_ p(X)\) is always barrelled, regardless of whether \(X\) has this property or not.

MSC:

46E40 Spaces of vector- and operator-valued functions
46A08 Barrelled spaces, bornological spaces
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46G10 Vector-valued measures and integration
Full Text: DOI

References:

[1] Piotr Antosik and Józef Burzyk, Sequential conditions for barrelledness and bornology, Bull. Polish Acad. Sci. Math. 35 (1987), no. 7-8, 457 – 459 (English, with Russian summary). · Zbl 0642.46003
[2] J. Diestel and J. J. Uhl Jr., Vector measures, American Mathematical Society, Providence, R.I., 1977. With a foreword by B. J. Pettis; Mathematical Surveys, No. 15. · Zbl 0369.46039
[3] L. Drewnowski, M. Florencio, and P. J. Paúl, Uniform boundedness of operators and barrelledness in spaces with Boolean algebras of projections. IV Convegno di Analisi Reale e Teoria de Misura, Capri, Italy, 1990, (to appear). · Zbl 0849.46002
[4] Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. · Zbl 0078.10004
[5] Liliana Janicka and Nigel J. Kalton, Vector measures of infinite variation, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 25 (1977), no. 3, 239 – 241 (English, with Russian summary). · Zbl 0354.28007
[6] Gottfried Köthe, Topological vector spaces. I, Translated from the German by D. J. H. Garling. Die Grundlehren der mathematischen Wissenschaften, Band 159, Springer-Verlag New York Inc., New York, 1969. · Zbl 0179.17001
[7] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. · Zbl 0403.46022
[8] J. A. López Molina, The dual and bidual of an echelon Köthe space, Collect. Math. 31 (1980), no. 2, 159 – 191. · Zbl 0491.46025
[9] G. G. Lorentz and D. G. Wertheim, Representation of linear functionals on Köthe spaces, Canadian J. Math. 5 (1953), 568 – 575. · Zbl 0051.09002
[10] Pedro Pérez Carreras and José Bonet, Barrelled locally convex spaces, North-Holland Mathematics Studies, vol. 131, North-Holland Publishing Co., Amsterdam, 1987. Notas de Matemática [Mathematical Notes], 113. · Zbl 0614.46001
[11] B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), no. 2, 277 – 304. · Zbl 0019.41603
[12] Konrad Reiher, Weighted inductive and projective limits of normed Köthe function spaces, Results Math. 13 (1988), no. 1-2, 147 – 161. · Zbl 0636.46023 · doi:10.1007/BF03323402
[13] Werner J. Ricker and Helmut H. Schaefer, The uniformly closed algebra generated by a complete Boolean algebra of projections, Math. Z. 201 (1989), no. 3, 429 – 439. · Zbl 0655.47038 · doi:10.1007/BF01214906
[14] G. Erik F. Thomas, Totally summable functions with values in locally convex spaces, Measure theory (Proc. Conf., Oberwolfach, 1975) Springer, Berlin, 1976, pp. 117 – 131. Lecture Notes in Math., Vol. 541.
[15] Robert Welland, On Köthe spaces, Trans. Amer. Math. Soc. 112 (1964), 267 – 277. · Zbl 0122.11501
[16] Adriaan Cornelis Zaanen, Integration, North-Holland Publishing Co., Amsterdam; Interscience Publishers John Wiley & Sons, Inc., New York, 1967. Completely revised edition of An introduction to the theory of integration.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.