×

Multilinear Cayley factorization. (English) Zbl 0747.15009

The author develops an algorithm which solves the Cayley factorization of a homogeneous bracket polynomial \(P\) which is multilinear. The algorithm has seven steps.
In step 1 we first find the atomic extensors for the bracket polynomial \(P(a,b,\ldots,z)\) of rank \(d\) which is multilinear in the \(N\) points \(a,b,\ldots,z\). In step 2 we rewrite \(P\) as a bracket polynomial which is dotted in each atomic extensor. In step 3 we apply straightening with the \(d\) elements of \(E\) first in the linear order, if there exists an atomic extensor \(E\) of step 1. The result must have \(E\) as the first row of every resulting tableau.
In step 4 we find a primitive factor if any, for pairs of extensors \(E=\{e_ 1,e_ 2,\ldots,e_ k\}\), \(F=\{f_ 1,f_ 2,\ldots,f_ \ell\}\) such that \(k+\ell\geq d\). Step 5 checks if such \(E\) and \(F\) do not exist. Then no factorization is possible. In step 6 we recompute the atomic extensors by trying to extend the current ones. Finally in step 7 we go to step 2 and repeat. An example is worked out.

MSC:

15A75 Exterior algebra, Grassmann algebras
68W30 Symbolic computation and algebraic computation
Full Text: DOI

References:

[1] Barnabei, M.; Brini, A.; Rota, G.-C., On the exterior calculus of invariant theory, J. Algebra, 96, 120-160 (1985) · Zbl 0585.15005
[2] Bokowski, J.; Sturmfels, B., Polytopal and nonpolytopal spheres: an algorithmic approach, Israel J. Math., 57, 257-271 (1987) · Zbl 0639.52004
[3] Bourbaki, N., (Eléments de Mathématique, Algèbra (1970), C.C.L.S.: C.C.L.S. Paris), Chap. 3, Diffusion · Zbl 0623.18008
[4] Chou, S.; Schelter, W. F.; Yang, J., Characteristic sets and Gröbner bases in geometry theorem proving, (Crapo, H., Computer-aided geometric reasoning (1987), INRIA Rocquencourt: INRIA Rocquencourt France), 29-56
[5] Crapo, H., Invariant-theoretic methods in scene analysis and structural mechanics, J. Symbolic Computation, 11, 523-548 (1991) · Zbl 0743.13003
[6] Doubilet, P.; Rota, G.-C.; Stein, J., On the foundations of combinatorial theory IX: Combinatorial methods in invariant theory, Studies in Applied Math., 57, 185-216 (1974) · Zbl 0426.05009
[7] Greub, W. H., Linear algebra, (Grundlehren der Mathematischen Wissenschaften, Vol. 97 (1963), Springer-Verlag: Springer-Verlag Berlin), or Academic Press, New York · Zbl 0147.27408
[8] Greub, W. H., (Multilinear algebra, Grundlehren der Mathematischen Wissenschaften, Vol. 136 (1967), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0169.35302
[9] Grosshans, F.; Rota, G.-C.; Stein, J., Invariant theory and superalgebras, (C.B.M.S. Regional Conference Series, No. 69 (1987), American Math. Society) · Zbl 0648.15020
[10] Havel, T., The use of distances as coordinates in computer-aided proofs of theorems in Euclidean geometry, J. Symbolic Computation, 11, 579-593 (1991) · Zbl 0743.51011
[11] Hodge, W. V.D.; Pedoe, D., (Methods of algebraic geometry, Vol. 1 and 2 (1946), Cambridge Univ. Press: Cambridge Univ. Press London) · Zbl 0055.38705
[12] Kutzler, B.; Stifter, S., On the application of Buchberger’s algorithm to automated geometry theorem proving, J. Symbolic Computation, 2, 389-398 (1986) · Zbl 0629.68086
[13] Marcus, M., Finite dimensional multilinear algebra, Parts I and II (1973 and 1975), Dekker: Dekker New York · Zbl 0284.15024
[14] McMillan, T., Invariants of Antisymmetric Tensors, (Ph. D. thesis (1989), University of Florida: University of Florida Gainesville, FL)
[15] McMillan, T.; White, N., Cayley factorization, (Proceedings, Int. Symp. Symbolic and Alg. Comput. (1987), Univ. Roma “La Sapienza,”: Univ. Roma “La Sapienza,” Eome)
[16] McMillan, T.; White, N., The dotted straightening algorithms, J. Symbolic Computation, 11, 471-482 (1991) · Zbl 0733.15019
[17] Procesi, C., A primer in invariant theory, Brandeis Lecture Notes, 1 (1982)
[18] Kota, G.-C.; Stein, J., Applications of Cayley algebras, Accademia Nazionale dei Lincei atti dei Convegni Lincei 17, (Colloquio Internazionale sulle Teorie Combinatoire. Colloquio Internazionale sulle Teorie Combinatoire, Tomo 2, Roma (1976))
[19] Bota, G.-C.; Stein, J., Symbolic method in invariant theory, Proc. Nat. Acad, Sci. U.S.A., Mathematics, 83, 844-847 (1986) · Zbl 0613.15026
[20] Sturmfels, B.; White, N., Gröbner bases and invariant theory, Advances in Math., 76, 245-259 (1989) · Zbl 0695.13001
[21] Sturmfels, B.; Whiteley, W., On the synthetic factorization of projectively invariant polynomials, J. Symbolic Computation, 11, 439-453 (1991) · Zbl 0763.51011
[22] Turnbull, H. W., The theory of determinants, matrices, and invariants (1928), Blackie and Son: Blackie and Son London · Zbl 0103.00702
[23] White, N., The bracket ring of a combinatorial geometry. I, Transactions American Math. Soc., 202, 79-95 (1975) · Zbl 0303.05022
[24] White, N.; Whiteley, W., The algebraic geometry of stresses in frameworks, S.I.A.M. J. Algebraic and Discrete Methods, 4, 481-511 (1983) · Zbl 0542.51022
[25] White, N.; Whiteley, W., The algebraic geometry of motions of bar-and-body frameworks, S.IAM. J. Algebraic and Discrete Methods, 8, 1-32 (1987) · Zbl 0635.51014
[26] Young, A., On quantitative substitutional analysis, (3rd paper), Proc. London Math Soc. Ser. 2, 28, 256-292 (1928) · JFM 54.0150.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.