×

A pair of generalized Hankel-Clifford transformations and their applications. (English) Zbl 0746.46031

Two Hankel transformations called Hankel-Clifford transformations are defined in certain spaces of distributions by means of adjoint operators. In fact, the first Hankel-Clifford transformation is defined as the adjoint of the second Hankel-Clifford transformation, and conversely. These transforms are applied in solving some distributional partial differential equations of Kepinsky type. For \(I=(0,\infty)\) and \(\mu\geq 0\), testing function spaces \(S(I)\) and \(H_ \mu(I)\) are defined (details are omitted).
The classical Hankel-Clifford transformations \(h_{1,\mu}\) and \(h_{2,\mu}\) are respectively defined as: \[ \begin{aligned} (h_{1,\mu}\phi)(y) &= \Phi(y)=y^ \mu \int_ 0^ \infty C_ \mu(xy)\phi(x)dx,\tag{1} \\ (h_{2,\mu}\psi)(y) &= \Psi(y)=\int_ 0^ \infty x^ \mu C_ \mu(xy)\psi(x)dx,\tag{2} \\ \end{aligned} \] for all \(\phi(x)\in H_ \mu(I)\) and \(\psi(x)\in S(I)\); \[ C_ \mu(x)=\sum_{r=0}^ \infty {{(-1)^ r x^ r} \over {r!\Gamma(\mu+r+1)}}. \] The main theorems proved are as follows:
Theorem 1: The first Hankel-Clifford transformation \(h_{1,\mu}\) is an automorphism on \(H_ \mu(I)\).
Theorem 2: The second Hankel-Clifford transformation \(h_{2,\mu}\) is an automorphism on \(S(I)\).
The generalized Hankel-Clifford transformation \(h'_{1,\mu}\) on \(S'(I)\) is defined as: \[ \langle h'_{1,\mu}f,\phi\rangle = \langle f,h_{2,\mu}\phi\rangle, \] for all \(f\in S'(I)\) and \(\phi\in S(I)\).
Analogously, the second generalized Hankel-Clifford transformation \(h'_{2,\mu}\) on \(H'_ \mu(I)\) is defined as \[ \langle h'_{2,\mu}f,\phi\rangle = \langle f,h_{1,\mu}\phi\rangle, \] for all \(f\in H'_ \mu(I)\) and \(\phi\in H_ \mu(I)\).
It is respectively established that \(h'_{1,\mu}\) is an automorphism on \(S'(I)\) and \(h'_{2,\mu}\) is an automorphism on \(H'_ \mu(U)\).
Various interesting results are also proved in the sequel. Operation transform formulae are also obtained and applied in solving partial differential equations of Kepinksi type such as: \[ x{{\partial^ 2u}\over{\partial x^ 2}}+{(1+\mu){\partial u}\over{\partial x}} - {\lambda{\partial u} \over {\partial t}}=0;\qquad \mu\geq 0,\;\lambda>0,\;0<t<\infty,\;0<x<\infty, \] with the initial condition \(\mu(x,t)\to f(x)\in H'_ \mu(I)\) as \(t\to 0^ +\).
Reviewer: L.S.Dube (Quebec)

MSC:

46F12 Integral transforms in distribution spaces
46F05 Topological linear spaces of test functions, distributions and ultradistributions
47F05 General theory of partial differential operators
Full Text: DOI

References:

[1] Colombo, S., Les transformations de Mellin et de Hankel (1959), CNRS: CNRS Paris · Zbl 0123.30106
[2] Chaudhary, M. S., Hankel type transform of distributions, Ranchi Univ. Math. J., 12, 9-16 (1981) · Zbl 0527.46034
[3] Dube, L. S.; Pandey, J. N., On the Hankel transforms of distributions, Tôhoku Math. J., 27, 337-354 (1975) · Zbl 0331.46032
[4] Gelfand, I. M.; Shilov, G. E., (Generalized Functions, Vol. 2 (1968), Academic Press: Academic Press New York/London) · Zbl 0159.18301
[5] Gray, A.; Matthews, G. B.; MacRobert, T. M., A Treatise on Bessel Functions and their Applications to Physics (1952), Macmillan: Macmillan London
[6] Greenhill, G., The Bessel-Clifford function, and its applications, Phil. Mag. Ser. 6, 37, 501-528 (1919) · JFM 47.0341.01
[7] Hayek, N., Estudio de la ecuación diferencial xy″ + \((v + 1) y\)′ + \(y = 0 y\) de sus aplicaciones, Collect. Math., 18, 55-174 (1966-1967)
[8] Hayek, N., Sobre la transformación de Hankel, (Actas de la VIII Reunión Anual de Matemáticos Epañoles (1967)), 47-60 · Zbl 0211.14102
[9] Lee, W. Y., On Schwartz’s Hankel transformation of certain spaces of distributions, SIAM J. Math. Anal., 6, 427-432 (1975) · Zbl 0273.46031
[10] Méndez, J. M., A mixed Parseval equation and the generalized Hankel transformation, (Proc. Amer. Math. Soc., 102 (1988)), 619-624 · Zbl 0656.46031
[11] Méndez, J. M., La transformación integral de Hankel-Clifford (1979), Secretariado de Publicaciones de la Universidad de La Laguna: Secretariado de Publicaciones de la Universidad de La Laguna La Laguna
[12] Pastor, Rey; de Castro, A., Funciones de Bessel y Aplicaciones (1958), Dossat: Dossat Madrid · Zbl 0082.28302
[13] Schwartz, L., Théorie des distributions (1966), Hermann: Hermann Paris · Zbl 0149.09501
[14] Tricomi, F. G., Funzioni Speciali (1959), Gheroni: Gheroni Torino · Zbl 0073.28604
[15] Tricomi, F. G., Sulla trasformazione e il teorema di reciprocita di Hankel, Rend. Lincei, 22, 564-571 (1935) · Zbl 0013.39802
[16] Watson, G. N., Theory of Bessel Functions (1958), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0174.36202
[17] Zemanian, A. H., A distributional Hankel transformation, J. SIAM Appl. Math., 14, 561-576 (1966) · Zbl 0154.13803
[18] Zemanian, A. H., Generalized Integral Transformations (1987), Interscience: Interscience New York, republished by · Zbl 0643.46029
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.