×

On the reconstruction of a unitary matrix from its moduli. (English) Zbl 0746.15014

Motivated by the problem of constructing the \(S\)-matrix for a scattering process from experimental data, the authors examine the following matrix question: If an \(n\times n\) matrix is known to be unitary, to what extent is it determined by the values of the moduli of its elements?
One can begin by doing a parameter count: An \(n\times n\) matrix depends on \(n^ 2\) real parameters, and there are \(n^ 2\) moduli. The latter are, however, not independent. In fact, the \(n\) rows and the \(n\) columns all have unit length. These \(2n\) relations can be reduced to \(2n-1\) independent relations by noting that the sum of all row lengths equals the sum of all column lengths.
Thus, in the original question, there appears to be a shortfall of \(2n-1\) real parameters. Fortunately this is not a genuine difficulty. For, taking out the \(n\) phases of the first row and the remaining \(n-1\) phases of the first column, the parameter counts balance and there remains a well-posed problem.
In particular, one might expect that the reconstruction problem, modulo the \(2n-1\) trivial phase ambiguities, has only a finite number of solutions. This is known to be true for \(n=2\) and \(n=3\). Using contraction mapping techniques, these results are extended to general \(n\) and for symmetric matrices which are not too far from the unit matrix.
However, for non-symmetric matrices and \(n>3\), a continuous set of solutions appear for certain configurations of the moduli. This implies, in particular, that the unitary group \(U(n)\) with \(n>3\) cannot be fully parametrized, even locally, by the set of \((n-1)^ 2\) independent moduli and the \(2n-1\) trivial phases.
The case \(n=4\), with one non-trivial free phase, is examined exhaustively, and there are further comments on the nearly-symmetric case.

MSC:

15B57 Hermitian, skew-Hermitian, and related matrices
15A90 Applications of matrix theory to physics (MSC2000)
81U20 \(S\)-matrix theory, etc. in quantum theory
Full Text: DOI

References:

[1] Babelon, O., Basdevant, J. L., Caillerie, P., Mennessier, G.: Nucl. Phys.B113, 445 (1976) · doi:10.1016/0550-3213(76)90137-1
[2] For a review, see for instance Chapter X of ”Inverse Problems in Quantum Scattering Theory” by K. Chadan and P. Sabatier, second ed. Berlin, Heidelberg, New York: Springer 1989 · Zbl 0681.35088
[3] Itzykson, C., Martin, A.: Nuovo Cimento17A, (2) 245 (1973); Behrends, F. A., Ruijenaars, S. N.: Nucl. Phys.B56, 507 (1973); Cornille, H., Drouffe, J. M.: Nuovo Cimento20A, 401 (1974)
[4] Crichton, J. H.: Nuovo Cimento45A, 256 (1966)
[5] Kobayashi, M., Maskawa, T.: Prog. Theor. Phys.49, 652 (1973) · doi:10.1143/PTP.49.652
[6] Branco, G.: CERN preprint TH 5679/90.
[7] Cabibbo, N.: Phys. Rev. Lett.10, 531 (1963); Glashow, S. L., Iliopoulos, J., Maiani, L.: Phys. Rev.D2, 1285 (1970) · doi:10.1103/PhysRevLett.10.531
[8] According to the review of Fernandez, E. in Neutrino90 (CERN, June 1990), the best number, from the 4 LEP experiments, is 2.99{\(\pm\)}0.08, to appear in the proceedings
[9] Jarlskog, C.: Phys. Rev. Lett.55, 1039 (1985); Z. Phys.C29, 491 (1985); Dunietz, I., Greenberg, O. W., Wu, D. D.: Phys. Rev. Lett.55, 2935 (1985); Botella, F. J., Chau, L. L.: Phys. Lett.168B, 97 (1986); Wu, D. D.: Phys. Rev.D33, 860 (1986); Nieves, J. F., Pal, P. B.: ibid. Phys. Rev.36, 315 (1987); Wu, D. D., Wu, Y. L.: Chin. Phys. Lett.4, 441 (1987); Hamzaoui, C.: Phys. Rev. Lett.61, 35 (1988) · doi:10.1103/PhysRevLett.55.1039
[10] Schramm, D.: private communication; Schatzmann, E.: private communication
[11] Collaboration, C. D. F.: presented by K. Sliwa at Rencontres de Moriond, 4–11 March 1990, to appear in the proceedings (Editions Frontieres)
[12] Mennessier, G., Nuyts, J.: J. Math. Phys.15, 1525 (1974) · Zbl 0288.15024 · doi:10.1063/1.1666843
[13] Kruszyriski, P.: TU Delft Report 87-06 (1987)
[14] Auberson, G.: Phys. Lett.B216, 167 (1989). See also: Auberson, G., Martin, A. Mennessier, G.: In: Multiparticle Dynamics, Festschrift for Léon Van Hove, p. 601. Giovannini, A. Kittel, W. (eds.) Singapore: World Scientific 1990, Martin, A.: In: CP Violation in Physics and Astrophysics, p. 307, Tran Than Van, J. (ed.) Editions Frontières, Gif Sur Yvette (1990). In the latter reference there is an erroneous statement concerning antisymmetric unitary matrices · Zbl 0664.46075 · doi:10.1016/0370-2693(89)91389-0
[15] Murnaghan, F. D.: ’The unitary and rotation groups,’ Washington, D. C.: Spartan 1962, Botella, F. J., Chau, L. L.: Phys. Lett.168B, 97 (1986) · Zbl 0112.26302
[16] Lavoura, L.: Phys. Rev.D40, 2440 (1989) · doi:10.1103/PhysRevD.40.2440
[17] Lavoura, L.: Lisbon preprint FM-1/89 (1989); Phys. Lett.B223, 97 (1989)
[18] Bjorken, J. D.: Phys. Rev.D39, 1396 (1989) · doi:10.1103/PhysRevD.39.1396
[19] Wolfenstein, L.: Phys. Rev. Lett.51, 1945 (1983) · doi:10.1103/PhysRevLett.51.1945
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.