×

Similarity reductions from extended Painlevé expansions for nonintegrable evolution equations. (English) Zbl 0745.35046

Summary: The use of singular manifold expansions to find exact solutions to nonintegrable evolution equations is extended to include arbitrary (resonance) coefficients in such a way as to make the resulting infinite series exactly resummable. The technique involves the use of a rescaling ansatz analogous to that used to analyze the psi-series of nonintegrable ordinary differential equations. The result is a similarity reduction of the equation in which the constrained singular manifold plays the role of a similarity variable. The method is capable of yielding new solutions corresponding to either classical or nonclassical (conditional) Lie symmetries.

MSC:

35Q80 Applications of PDE in areas other than physics (MSC2000)
37-XX Dynamical systems and ergodic theory
Full Text: DOI

References:

[1] Tabor, M., Chaos and Integrability in Nonlinear Dynamics (1989), Wiley Interscience: Wiley Interscience New York · Zbl 0682.58003
[2] Weiss, J.; Tabor, M.; Carnevale, G., J. Math. Phys., 24, 256-522 (1983) · Zbl 0514.35083
[3] Cariello, F.; Tabor, M., Physica D, 39, 77-94 (1989) · Zbl 0687.35093
[4] Weiss, J., J. Math. Phys., 25, 2226-2235 (1984) · Zbl 0557.35107
[5] Fournier, J.-D.; Spiegel, E. A.; Thual, O., (Turchetti, G., Conference on Nonlinear Dynamics. Conference on Nonlinear Dynamics, Bologna, 1988 (1989), World Scientific: World Scientific Singapore)
[6] Conte, R.; Musette, M., J. Phys. A: Math. Gen., 22, 169-177 (1989) · Zbl 0687.35087
[7] Newell, A.; Tabor, M.; Zeng, Y. B., Physica D, 29, 1-68 (1987) · Zbl 0643.35096
[8] Fournier, J. D.; Levine, G.; Tabor, M., J. Phys. A: Math. Gen., 21, 33-54 (1988) · Zbl 0641.34034
[9] Levine, G.; Tabor, M., Physica D, 33, 189-210 (1988) · Zbl 0663.58042
[10] Bluman, G. W.; Cole, J. D., Similarity Methods for Differential Equations, (Appl. Math. Sci., 13 (1974), Springer: Springer New York) · Zbl 0292.35001
[11] Abramowitz, M.; Stegun, I. A., (Handbook of Mathematical Functions (1965), Dover: Dover New York)
[12] Keefe, L. R., Phys. Fluids, 29, 3135-3141 (1986) · Zbl 0602.76061
[13] Skierski, M.; Grunland, A. M.; Tuszynski, J. A., J. Phys. A: Math. Gen., 22, 199-219 (1989)
[14] Ablowitz, M. J.; Zeppetella, A., Bull. Math. Biol., 41, 835-840 (1979) · Zbl 0423.35079
[15] Clarkson, P.; Kruskal, M. D., J. Math. Phys., 30, 2201-2213 (1989) · Zbl 0698.35137
[16] Levi, D.; Winternitz, J. Phys. A, 22, 2915-2924 (1989) · Zbl 0694.35159
[17] Clarkson, P., J. Phys. A: Math. Gen., 22, 3821-3848 (1989) · Zbl 0711.35113
[18] Gibbon, J. D.; Newell, A. C.; Tabor, M.; Zeng, Y. B., Nonlinearity, 1, 481-490 (1988) · Zbl 0682.34011
[19] Weiss, J., Phys. Lett. A, 105, 387-389 (1984)
[20] T. Sen, private communication.; T. Sen, private communication.
[21] J.A. Powell, A.C. Newell and C.K.R.T. Jones, Competition between generic and nongeneric fronts in envelope equations, preprint.; J.A. Powell, A.C. Newell and C.K.R.T. Jones, Competition between generic and nongeneric fronts in envelope equations, preprint.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.