×

On stochastic processes generated by quadric operators. (English) Zbl 0744.60075

Let \((E,{\mathcal F})\) be a measurable space and \({\mathfrak M}\) the collection of all probability measures on \((E,{\mathcal F})\). Denote by \(P(s,x,y,t,A)\), \(x,y\in E\), \(A\in{\mathcal F}\), the probability of obtaining an element from the set \(A\) at the moment \(t\) provided that the elements \(x\) and \(y\) interact at the moment \(s\). Let \(m_ 0\in{\mathfrak M}\) be an initial measure. Let the system of transition functions \(\{P(s,x,y,t,A)\): \(x,y\in E\), \(A\in{\mathcal F}\), \(s,t\in R^ +\}\) satisfy the following conditions:
1. \(P(s,x,y,t,A)=P(s,y,x,t,A)\) and it is defined for \(t-s\geq 1\), \(x,y\in E\), \(A\in{\mathcal F}\).
2. \(P(s,x,y,s+1,A)=P(0,x,y,1,A)\) for any \(s\geq 1\) and arbitrary \(x,y\in E\) and \(A\in {\mathcal F}\).
3. \(P(s,x,y,t,\cdot)\) is a probability measure on \((E,{\mathcal F})\) for any \(x,y\in E\).
4. \(P(s,x,y,t,A)\) as a function of two variables is measurable with respect to \((E\times E,{\mathcal F}\otimes{\mathcal F})\) for any \(A\in{\mathcal F}\).
5. Analogues of Kolmogorov-Chapman equation. There are two versions. For any \(s<\tau<t\) such that \(t-\tau\geq 1\) and \(\tau-s\geq 1\) either \[ P(s,x,y,t,A)=\int_ E\int_ E P(s,x,y,\tau,du)P(\tau,u,v,t,A)m_ \tau(dv),\tag{5a} \] where the measure \(m_ t\) on \((E,{\mathcal F})\) is defined as \[ m_ t(B)=\int_ E\int_ E P(0,x,y,t,B)m_ 0(dx)m_ 0(dy),\qquad B\in{\mathcal F}, \] or \[ P(s,x,y,t,A)=\int_ E\int_ E\int_ E\int_ E P(s,x,z,\tau,du)P(s,y,v,\tau,dw)P(\tau,u,w,t,A)m_ s(dz)m_ s(dv).\tag{5b} \] Then the process defined by the transition functions \(P(s,x,y,t,A)\) is called a quadric stochastic process of type \(A\) or type \(B\), respectively, in accordance with the fundamental condition (5a) or (5b).
Equations (5a) or (5b) can be interpreted as difference rules of the appearance of the “grandson”. These equations have implications also for chemical treatments. So the appearance of a particle in reactions passing in ordinary chemical kinetics is described by equations of type (5a), and the equations of type (5b) reflect the appearance of particles in processes of catalysis.
Theorem. Let \(P(s,x,y,t,A)\) be a transition function determining quadric stochastic process of type \(A\) or \(B\) and \(m_ 0\in{\mathfrak M}\) an initial distribution. Then the function \[ Q(s,x,t,A)=\int_ E P(s,x,y,t,A)m_ s(dy) \] is the transition function for some Markov process with the initial distribution \(m_ 0\). For quadric stochastic processes differential equations similar to Kolmogorov equations are deduced.

MSC:

60J10 Markov chains (discrete-time Markov processes on discrete state spaces)
Full Text: DOI

References:

[1] Blakley G. R. (1965). Homogeneous non-negative symmetric quadratic transformations.Bull. AMS 70, 712-715. · Zbl 0275.60076 · doi:10.1090/S0002-9904-1964-11182-4
[2] Bodmer, W. F. (1960). Discrete stochastic processes in population genetics.J. R. Statist. Soc. B22, 218-244. · Zbl 0234.92006
[3] Dobrushin, R. L. (1956). Central limit theorem for non-stationary Markov chains.Teor. Veroyat. i Primenen. 1, 365-425. · Zbl 0093.15001
[4] Elsgols, L. E., and Norkin, S. B. (1971).Introduction to the Theory of Differential Equations with a Deviating Argument. Nauka, Moscow.
[5] Feller, W. (1951). Diffusion processes in genetics.Proc. Second Berkeley Symp. on Math. Stat. and Prob., pp. 227-246. · Zbl 0045.09302
[6] Hajnal, J. (1958). Weak ergodicity in non-homogeneous Markov chains.Proc. Cambridge Phil. Soc. 54, 233-246. · Zbl 0082.34501 · doi:10.1017/S0305004100033399
[7] Jenks, R. D. (1968). Homogeneous multidimensional differential systems for mathematical models.J. Diff. Equations 4, 549-565. · Zbl 0203.39604 · doi:10.1016/0022-0396(68)90005-3
[8] Jenks, R. D. (1968). Irreducible tensors and associated homogeneous nonnegative transformations.J. Diff. Equations 4, 566-572. · Zbl 0193.04601 · doi:10.1016/0022-0396(68)90006-5
[9] Jenks, R. D. (1969). Quadratic differential systems for mathematical models.J. Diff. Equations 5, 497-514. · Zbl 0186.15801 · doi:10.1016/0022-0396(69)90090-4
[10] Kesten, H. (1970). Quadratic transformation: A model for population growth I.Adv. Appl. Prob. 2, 1-82; andII. Adv. Appl. Prob. 2, 179-228. · Zbl 0328.92011 · doi:10.2307/3518344
[11] Kesten, H. (1971). Some nonlinear stochastic growth models.Bull. AMS. 4, 492-511. · Zbl 0307.92012 · doi:10.1090/S0002-9904-1971-12732-5
[12] Kimura, M. (1964). Diffusion models in population genetics.J. Appl. Prob. 1, 177-232. · Zbl 0134.38103 · doi:10.2307/3211856
[13] Kolmogorov, A. N. (1938). On analytic methods in probability theory.Uspehi Math. Nauk 5, 5-51.
[14] Lubich, Ju. I. (1971). Fundamental conceptions and theorems of evolution genetics of free populations.Uspehi Math. Nauk 26, 51-116.
[15] Lubich, Ju. I. (1974)Iterations of Quadric Transformations. Mathematics Economics and Functional Analysis. Nauka, Moscow, pp. 109-138.
[16] Lubich, Ju. I. (1983).Mathematical structures in population genetics. Naukova dymka, Kiev.
[17] Sarymsakov, T. A., and Ganihodzhaev, N. N. (1989). Analytic methods in the theory of quadric stochastic operators.Dokl. Akad. Nauk SSSR 305, 1052-1056.
[18] Sarymsakov, T. A., and Ganihodzhaev, N. N. (1990). Analytic methods in the theory of quadric stochastic operators.J. Theor. Prob. 3, 51-70. · Zbl 0696.60062 · doi:10.1007/BF01063328
[19] Vallander, S. S. (1972). Weak convergience of some sequential distributions of probabilities. Vestnik LGU. Ser. Math. Meh. Astr.13, 21-31.
[20] Vallander, S. S. (1972). On the limit behavior of a sequence of iterations of quadratic transformations.Dokl. Akad. Nauk SSSR. 202, 515-517.
[21] Vallander, S. S. (1986). Ergodic properties of some family of quadric stochastic operators.Kolsa i moduli. Predelnie theoremi teorii veroyatnostei 1, 153-157.
[22] Vallander, S. S., Ibragimov, I. A., and Lindtrop, N. G. (1969). On limiting distributions for moduli of sequential differences of independent variables.Teoriya ver i prim,XIV, 693-707. · Zbl 0185.46501
[23] Zaharevich, M. I. (1978). On the behavior of trajectories and ergodic hypothesis for quadric transformations of simplex.Uspehi Math. Nauk 33, 207-208.
[24] Zaharevich, M. I. (1981). Ergodic properties of nonlinear transformation connected with models of economic dynamic.Dokl. Akad. Nauk SSSR 260, 1298-1301.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.