×

Cyclic Galois extensions and normal bases. (English) Zbl 0743.11060

Let \(K\) be an algebraic number field with ring of integers \({\mathcal O}_K\), and \(b\) be an odd prime. The number of independent \(\mathbb{Z}_p\)-extensions of \(K\) is conjectured by Leopoldt to be \(r_2+1\), where \(r_2\) is the number of complex places of \(K\). This conjecture can be placed in the context of Galois extensions of commutative rings as follows: Let \(R={\mathcal O}_K[1/p]\), then a \(\mathbb{Z}_p\)-extension of \(K\) is unramified except at primes lying over \(p\), hence gives rise to a tower of \(C_n\)-Galois extensions of \(R\) for \(n>0\), \(C_n=\) cyclic group of order \(p^n\). Let \(\mathrm{Gal}(R,C_n)\) be the group of (isomorphism classes of) Galois extensions of \(R\) with Galois group \(C_n\), and \(\mathrm{Gal}(R,\mathbb{Z}_ p)=\underleftarrow{\lim}\,\mathrm{Gal}(R,C_n)\): then Leopoldt’s conjecture is that \(\mathrm{Gal}(R,\mathbb{Z}_p)\cong\mathbb{Z}_p^{r_2+1}\). Let \(NB(R,C_n)\) denote the subgroup of Galois extensions with normal basis, and \(NB(R,\mathbb{Z}_p)=\underleftarrow{\lim}\,NB(R,C_n)\). The author proves that \(NB(R,\mathbb{Z}_p)\cong\mathbb{Z}_p^{r_2+1}\). This result was proved by I. Kersten and J. Michalicek [J. Number Theory 32, 131–150 (1989; Zbl 0709.11057)] if \(K\) is totally real or a \(CM\) field.
To obtain these results, the first part of the paper is devoted to understanding \(\mathrm{Gal}(R,C_n)\) when \(R\) is a connected commutative ring containing \(1/p\). If \(R\) also contains a primitive \(p^n\)-th root of unity \(\zeta\), then there is an exact Kummer sequence:
\[ 0\to NB(R,C_n)\to\mathrm{Gal}(R,C_n)\to{_n\mathrm{Pic}(R)}\to 0 \]
where \(NB(R,C_n)\cong U(R)/U(R)^{p^n}\) and \(_n\mathrm{Pic}(R)\) is the \(p^n\)-torsion subgroup of \(\mathrm{Pic}(R)\) [see the reviewer, Ill. J. Math. 15, 273–280 (1971; Zbl 0211.37102) or A. Z. Borevich, J. Sov. Math. 11, 514–534 (1979), transl. from Zap. Nauchn. Semin. Leningr., Otd. Mat. Inst. Steklova 57, 8–30 (1976; Zbl 0379.13003)]. The main technique for dealing with \(\mathrm{Gal}(R,C_n)\) when \(\zeta\notin R\) is descent. Let \(S=R[\zeta]\), then \(S\) is a Galois extension of \(R\) with group \(\Gamma\cong U(\mathbb{Z}/p^n\mathbb{Z})\). The natural action of \(\Gamma\) on \(\mathrm{Gal}(S,C_n)\) and a twisted action \(t\) of \(\Gamma\) on the other groups in the Kummer sequence over \(S\), yield the desired short exact sequence for \(\mathrm{Gal}(R,C_n)\):
\[ 0\to NB(R,C_ n)\to\hbox{Gal}(R,C_ n)\to P\to 0 \]
where \(P\cong(_n\mathrm{Pic}(S))^{t\Gamma}\) and \(NB(R,C_n)\cong(U(S)/U(S)^n)^{t\Gamma}\).

MSC:

11R32 Galois theory
11R20 Other abelian and metabelian extensions
12F10 Separable extensions, Galois theory
13B05 Galois theory and commutative ring extensions
Full Text: DOI

References:

[1] E. Artin, Über Einheiten relativ galoisscher Zahlkörper, J. Math. 167 (1931) 153-156; Gesammelte Werke, pp. 197-200. · Zbl 0003.14701
[2] A. Borevich, Kummer extensions of rings, J. Soviet Math. 11 (1979), 514-534. · Zbl 0401.13003
[3] Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. · Zbl 0075.24305
[4] S. U. Chase, D. K. Harrison, and Alex Rosenberg, Galois theory and Galois cohomology of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965), 15 – 33. · Zbl 0143.05902
[5] Lindsay N. Childs, The group of unramified Kummer extensions of prime degree, Proc. London Math. Soc. (3) 35 (1977), no. 3, 407 – 422. · Zbl 0374.13002 · doi:10.1112/plms/s3-35.3.407
[6] Lindsay N. Childs, Cyclic Stickelberger cohomology and descent of Kummer extensions, Proc. Amer. Math. Soc. 90 (1984), no. 4, 505 – 510. · Zbl 0538.12013
[7] Ralph Greenberg, On the Iwasawa invariants of totally real number fields, Amer. J. Math. 98 (1976), no. 1, 263 – 284. · Zbl 0334.12013 · doi:10.2307/2373625
[8] Cornelius Greither, Cyclic Galois extensions and normal bases, Théorie des nombres (Quebec, PQ, 1987) de Gruyter, Berlin, 1989, pp. 322 – 329. · Zbl 0866.11064
[9] -,, Cyclic extensions and normal bases, Proc. Internat. Number Theory Conference (Quebec 1987), De Gruyter, 1989, pp. 322-329.
[10] Cornelius Greither and Rick Miranda, Galois extensions of prime degree, J. Algebra 124 (1989), no. 2, 354 – 366. · Zbl 0706.13008 · doi:10.1016/0021-8693(89)90137-3
[11] R. Haggenmüller, Über Invarianten separabler Galoiserweiterungen kommutativer Ringe, Dissertation, Universität München, 1979.
[12] -, Über die Gruppe der Galoiserweiterungen vom Primzahlgrad, Habilitationsschrift, Universität München, 1985. · Zbl 0583.13002
[13] D. K. Harrison, Abelian extensions of commutative rings, Mem. Amer. Math. Soc. No. 52 (1965), 1 – 14. · Zbl 0143.06003
[14] Helmut Hasse, Die Multiplikationsgruppe der Abelschen Körper mit fester Galoisgruppe, Abh. Math. Sem. Univ. Hamburg 16 (1949), no. nos. 3-4, 29 – 40 (German). · Zbl 0039.26801 · doi:10.1007/BF03343516
[15] Kenkichi Iwasawa, On \?_{\?}-extensions of algebraic number fields, Ann. of Math. (2) 98 (1973), 246 – 326. · Zbl 0285.12008 · doi:10.2307/1970784
[16] G. J. Janusz, Separable algebras over commutative rings, Trans. Amer. Math. Soc. 122 (1966), 461 – 479. · Zbl 0141.03402
[17] Ina Kersten, Eine neue Kummertheorie für zyklische Galoiserweiterungen vom Grad \?², Algebra Berichte [Algebra Reports], vol. 45, Verlag Reinhard Fischer, Munich, 1983 (German). · Zbl 0519.13005
[18] I. Kersten and J. Michaliček, Kummer theory without roots of unity, J. Pure Appl. Algebra 50 (1988), no. 1, 21 – 72. · Zbl 0638.13007 · doi:10.1016/0022-4049(88)90003-5
[19] I. Kersten and J. Michaliček, On \Gamma -extensions of totally real and complex multiplication fields, C. R. Math. Rep. Acad. Sci. Canada 9 (1987), no. 6, 309 – 314. · Zbl 0649.12010
[20] -, \( {\mathbb{Z}_p}\)-extensions of complex multiplication fields, Ber. Math. Sem. Univ. Hamburg Ser. A 1 (1987).
[21] Max-Albert Knus and Manuel Ojanguren, Théorie de la descente et algèbres d’Azumaya, Lecture Notes in Mathematics, Vol. 389, Springer-Verlag, Berlin-New York, 1974 (French). · Zbl 0284.13002
[22] Heinrich-Wolfgang Leopoldt, Zur Arithmetik in abelschen Zahlkörpern, J. Reine Angew. Math. 209 (1962), 54 – 71. · Zbl 0204.07101 · doi:10.1515/crll.1962.209.54
[23] Saunders Mac Lane, Homology, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1975 edition. · Zbl 0818.18001
[24] A. S. Merkur\(^{\prime}\)ev, Structure of the Brauer group of fields, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 4, 828 – 846, 895 (Russian).
[25] David J. Saltman, Generic Galois extensions and problems in field theory, Adv. in Math. 43 (1982), no. 3, 250 – 283. · Zbl 0484.12004 · doi:10.1016/0001-8708(82)90036-6
[26] Shianghaw Wang, A counter-example to Grunwald’s theorem, Ann. of Math. (2) 49 (1948), 1008 – 1009. · Zbl 0032.10802 · doi:10.2307/1969410
[27] Lawrence C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1982. · Zbl 0484.12001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.