×

Shrinking projection method for solving inclusion problem and fixed point problem in reflexive Banach spaces. (English) Zbl 07419474

Summary: The purpose of this paper is to find a common element in the intersection of the set of zeros of the inclusion problem of sum of two monotone mappings and the set of fixed points of a Bregman quasi nonexpansive mapping in a reflexive Banach space by using Bregman distance and shrinking projection method. Under suitable conditions, some strong convergence theorems are proved. As applications, we utilize our results to study the convex minimization problem, variational inequality problem.

MSC:

47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
49J20 Existence theories for optimal control problems involving partial differential equations
49J40 Variational inequalities
Full Text: DOI

References:

[1] Chen, GHG; Rockafellar, RT., Convergence rates in forward-backward splitting, SIAM J Optim, 7, 421-444 (1997) · Zbl 0876.49009 · doi:10.1137/S1052623495290179
[2] Cholamjiak, P.A generalized forward-backward splitting method for solving quasi inclusion problems in Banach spaces. Numer Algor. doi:10.1007/s11075-015-0030-6. · Zbl 1342.47079
[3] Combettes, PL., Iterative construction of the resolvent of a sum of maximal monotone operators, J Convex Anal, 16, 727-748 (2009) · Zbl 1193.47067
[4] Combettes, PL; Wajs, VR., Signal recovery by proximal forward-backward splitting, Multiscale Model Simul, 4, 1168-1200 (2005) · Zbl 1179.94031 · doi:10.1137/050626090
[5] Lions, PL; Mercier, B., Splitting algorithms for the sum of two nonlinear operators, SIAM J Numer Anal, 16, 964-979 (1979) · Zbl 0426.65050 · doi:10.1137/0716071
[6] López, G.; Martín-Márquez, V.; Wang, F., Forward-Backward splitting methods for accretive operators in Banach spaces, Abstr Appl Anal, 2012, 25-00 (2012) · Zbl 1252.47043 · doi:10.1155/2012/109236
[7] Tseng, P., A modified forward-backward splitting method for maximal monotone mappings, SIAM J Control Optim, 38, 431-446 (2000) · Zbl 0997.90062 · doi:10.1137/S0363012998338806
[8] Chang, SS; Wen, CF; Yao, JC., Generalized viscosity implicit rules for solving quasiinclusion problems of accretive operators in Banach spaces, Optimization, 66, 7, 1105-1117 (2017) · Zbl 1477.47061 · doi:10.1080/02331934.2017.1325888
[9] Chang, SS, Wen, CF, Yao, JC.Zero point problem of accretive operators in Banach spaces. Bull Malays Math Sci Soc. doi:10.1007/s40840-017-0470-3. · Zbl 1493.47084
[10] Chang, S-s., Wen, C-F, Yao, J-C.A generalized forward-backward splitting method for solving a system of quasi variational inclusions in Banach spaces. RACSAM. doi:10.1007/s13398-018-0511-2, 2018. · Zbl 07086844
[11] Passty, GB., Ergodic convergence to a zero of the sum of monotone operators in Hilbert space, J Math Anal Appl, 72, 383-390 (1979) · Zbl 0428.47039 · doi:10.1016/0022-247X(79)90234-8
[12] Güler, O., On the convergence of the proximal point algorithm for convex minimization, SIAM J Control Optim, 29, 403-419 (1991) · Zbl 0737.90047 · doi:10.1137/0329022
[13] Rockafellar, RT., Monotone operators and the proximal point algorithm, SIAM J Control Optim, 14, 877-898 (1976) · Zbl 0358.90053 · doi:10.1137/0314056
[14] Bregman, LM., The relaxation method for finding the common point of convex sets and its application to the solution of problems in convex programming, USSR Comput Math Math Phys, 7, 200-217 (1967) · Zbl 0186.23807 · doi:10.1016/0041-5553(67)90040-7
[15] Reich, S.; Sabach, S., Two strong convergence theorems for Bregman strongly nonexpansive operators in reflexive Banach spaces, Nonlinear Anal, 73, 122-135 (2010) · Zbl 1226.47089 · doi:10.1016/j.na.2010.03.005
[16] Reich, S.; Sabach, S., Two strong convergence theorems for a proximal method in reflexive Banach spaces, Numer Funct Anal Optim, 31, 1, 22-44 (2010) · Zbl 1200.47085 · doi:10.1080/01630560903499852
[17] Sabach, S., Products of finitely many resolvents of maximal monotone mappings in reflexive Banach spaces, SIAM J Optim, 21, 4, 1289-1308 (2011) · Zbl 1237.47073 · doi:10.1137/100799873
[18] Bauschke, HH; Borwein, JM; Combettes, PL., Essential smoothness, essential strict convexity, and Legendre functions in Banach spaces, Commun Contemp Math, 3, 615-647 (2001) · Zbl 1032.49025 · doi:10.1142/S0219199701000524
[19] Censor, Y.; Lent, A., An iterative row-action method for interval convex program- ming, J Optim Theory Appl, 34, 321-353 (1981) · Zbl 0431.49042 · doi:10.1007/BF00934676
[20] Butnariu, D.; Kassay, G., A proximal-projection methods for finding zeroes of set-valued operators, SIAM J Control Optim, 47, 2096-2136 (2008) · Zbl 1208.90133 · doi:10.1137/070682071
[21] Butnariu, D.; Censor, Y.; Reich, S., Iterative averaging of entropic projections for solving stochastic convex feasibility problems, Comput Optim Appl, 8, 21-39 (1997) · Zbl 0880.90106 · doi:10.1023/A:1008654413997
[22] Butnariu, D, Resmerita, E.Bregman distances, totally convex functions and a method for solving operator equations in Banach spaces. Abstr. Appl. Anal. (2006) 1-39. Article ID 84919. · Zbl 1130.47046
[23] Kassay S. Riech, G.; Sabach, S., Iterative methods for solving systems of variational inequalities in Re exive Banach spaces, J Nonlinear Convex Anal, 10, 471-485 (2009) · Zbl 1180.47046
[24] Ogbuisi, FU; Izuchukwu, C., Approximating a zero of sum of two monotone operations which solves a fixed point problem in reflexive Banach spaces, Numerical Functional Analysis and Optimization, 42, 3, 322-343 (2020) · Zbl 1513.47125
[25] Suantai, S.; Cho, YJ; Cholamjiak, P., Halpern’s iteration for Bregman strongly nonexpansive mappings in reflexive Banach spaces, Comput Math Appl, 64, 489-499 (2012) · Zbl 1252.65100 · doi:10.1016/j.camwa.2011.12.026
[26] Rockafellar, RT., On the maximality of sums of nonlinear monotone operators, Trans Am Math Soc, 149, 75-88 (1970) · Zbl 0222.47017 · doi:10.1090/S0002-9947-1970-0282272-5
[27] Reich, S, Sabach, S.Existence and approximation of fixed points of Bregman firmly nonexpansive mappings in reflexive Banach spaces. Fixed-Point Algorithms for Inverse Problems in Science and Engineering. New York: Springer; 2010, p. 299-314.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.