×

On serial Noetherian rings. (English) Zbl 0739.16007

S. Singh [Arch. Math. 39, 306-311 (1982; Zbl 0502.16012)] considered rings \(R\) with the property: (P) every finitely generated right \(R\)-module is a direct sum of a projective module with zero socle and uniserial Artinian modules. He proved that a right FBN-ring satisfying (P) is a direct sum of an Artinian serial ring and right hereditary prime rings. In this note the authors prove that a ring \(R\) is Noetherian serial if and only if \(R\) is semiperfect and satisfies the following condition: (P’) every finitely generated right \(R\)-module is a direct sum of a projective module with zero socle and uniserial modules with finite length. One consequence is that any right nonsingular ring satisfying (P) is a direct sum of an Artinian serial ring, a serial ring with zero socle and prime rings. Finally, it is shown that a ring \(R\) is Artinian serial if and only if \(R\) satisfies (P) and \(eR\) is not isomorphic to a proper submodule of itself, for any primitive idempotent e, and this is equivalent to \(R\) having the following two properties: (a) every cyclic right \(R\)-module is a direct sum of an injective module and uniserial modules with non-zero socles, and (b) for any minimal right ideal \(S\) of \(R\), every 2-generated submodule of its injective hull \(E(S)\) is either projective or singular.

MSC:

16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras)
16P40 Noetherian rings and modules (associative rings and algebras)
16P20 Artinian rings and modules (associative rings and algebras)
16N60 Prime and semiprime associative rings
16L30 Noncommutative local and semilocal rings, perfect rings

Citations:

Zbl 0502.16012
Full Text: DOI

References:

[1] F. W.Anderson and K. R.Fuller, Rings and categories of modules. Berlin-Heidelberg-New York 1974. · Zbl 0301.16001
[2] A. W. Chatters, A characterisation of right noetherian rings. Quart. J. Math. Oxford (2)33, 65-69 (1982). · doi:10.1093/qmath/33.1.65
[3] A. W.Chatters and C. R.Hajarnavis, Rings with chain conditions. London 1980.
[4] Dinh van Huynh andNguyen V. Dung, A characterization of artinian rings. Glasgow Math. J.30, 67-73 (1988). · Zbl 0637.16012 · doi:10.1017/S0017089500007035
[5] Dinh van Huynh andPhan Dan, On rings with restricted minimum condition. Arch. Math.51, 313-326 (1988). · Zbl 0657.16007 · doi:10.1007/BF01194021
[6] C.Faith, Algebra II: Ring theory. Berlin-Heidelberg-New York 1976. · Zbl 0335.16002
[7] K. R. Fuller, On direct representations of quasi-injectives and quasi-projectives. Arch. Math.20, 495-502 (1969), (Corrections21, 478 (1970)). · Zbl 0188.08904 · doi:10.1007/BF01899456
[8] I. N. Herstein, A counter example in noetherian rings. Proc. Nat. Acad. Sc. (U.S.A.)54, 1036-1037 (1965). · Zbl 0138.26802 · doi:10.1073/pnas.54.4.1036
[9] K. Oshiro, Lifting modules, extending modules and their applications toQF-rings. Hokkaido Math. J.13, 310-338 (1984). · Zbl 0559.16013
[10] Phan Dan, Right perfect rings with extending property on finitely generated free modules. Osaka J. Math.26, 265-273 (1989). · Zbl 0701.16016
[11] S. Singh, On a Warfield’s theorem on hereditary rings. Arch. Math.39, 306-311 (1982). · Zbl 0502.16012 · doi:10.1007/BF01899437
[12] S. Singh, Serial right noetherian rings. Canad. J. Math.36, 22-37 (1984). · doi:10.4153/CJM-1984-003-5
[13] B. R., Jr Warfield, Serial rings and finitely presented modules. J. Algebra37, 187-222 (1975). · Zbl 0319.16025 · doi:10.1016/0021-8693(75)90074-5
[14] R. Wisbauer, Modules locally of serial type. Per. Math. Hungar.18, 39-52 (1987). · Zbl 0572.16016 · doi:10.1007/BF01849032
[15] R.Wiesbauer, Grundlagen der Modul- und Ringtheorie. München 1988.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.