×

A least-squares-based method for a class of nonsmooth minimization problems with applications in plasticity. (English) Zbl 0734.73097

Problems in mechanics such as limit analysis of beams and plates are studied. The above limit analysis problems are embedded in a wider class of nonsmooth functionals (involving a linear weighted least-squares problem), which contains also some location problems (e.g. the Fermat- Weber problem). An algorithm is proved for minimizing the functionals in the above class, which is based on a combination of smoothing and successive approximation (CSSA). This CSSA algorithm is a modification of that by W. H. Yang [Comput. Methods Appl. Mech. Eng. 33, 575-582 (1982; Zbl 0478.73022)].
A convergence analysis of the CSSA algorithm is presented including an excellent performance of the algorithm in the first step, regardless of the starting point. A dual problem to the smoothed primal is derived. It is shown how to obtain a stopping criterion for the algorithm and an estimation of the solution error. Computational results are presented for two limit analyses: a small-scale three bar truss and a large-scale simply supported square plate.
Reviewer: V.Burjan (Praha)

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
74R20 Anelastic fracture and damage
65K10 Numerical optimization and variational techniques
49M30 Other numerical methods in calculus of variations (MSC2010)
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74K20 Plates

Citations:

Zbl 0478.73022
Full Text: DOI

References:

[1] E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, New York, 1967.
[2] A. Ben-Tal and M. Teboulle, A geometric property of the least squares solution of linear equations, Linear Algebra Appl., 139 (1990), 165-170. · Zbl 0704.15005 · doi:10.1016/0024-3795(90)90395-S
[3] P. H. Calamai and A. R. Conn, A projected Newton method forl p norm location problems, Math. Programming, 38 (1987), 75-109. · Zbl 0642.90035 · doi:10.1007/BF02591853
[4] P. Concus, Numerical solution of minimal surface equation, Math. Comp., 21 (1967), 340-350. · Zbl 0189.16605 · doi:10.1090/S0025-5718-1967-0229394-6
[5] R. A. El-Attar, M. Vidyasagar, and S. R. K. Dutta, An algorithm forl 1-norm minimization with application to nonlinearl 1-approximation, SIAM J. Numer. Anal., 16 (1979), 70-86. · Zbl 0401.90089 · doi:10.1137/0716006
[6] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins University Press, Baltimore, Maryland, 1989. · Zbl 0733.65016
[7] H. W. Kuhn, A note on Fermat’s problem, Math. Programming, 4 (1973), 98-107. · Zbl 0255.90063 · doi:10.1007/BF01584648
[8] C. Michelot and O. Lefebvre, A primal-dual algorithm for the Fermat-Weber problem involving mixed gauges, Math. Programming, 39 (1987), 319-335. · Zbl 0641.90034 · doi:10.1007/BF02592080
[9] J. G. Morris, Convergence of the Weiszfeld algorithm for Weber problems using a generalized distance function, Oper. Res., 29 (1981), 37-48. · Zbl 0452.90023 · doi:10.1287/opre.29.1.37
[10] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, New Jersy, 1970. · Zbl 0193.18401
[11] E. Weiszfeld, Sur le point pour lequel la somme des distances de n points donnes est minimum, Tohoku Math. J., 43 (1937), 355-386. · Zbl 0017.18007
[12] W. H. Yang, A variational principle and an algorithm for limit analysis of beams and plate, Comput. Methods Appl. Mech. Engrg., 33 (1982), 575-582. · doi:10.1016/0045-7825(82)90123-2
[13] W. H. Yang, A general computational method for limit analysis, ASME Publ., 129 (1987), 21-31.
[14] W. H. Yang, A generalized von Mises criterion for yield and fracture, J. Appl. Mech., 47 (1980), 297-300. · Zbl 0463.73111 · doi:10.1115/1.3153658
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.