×

Convergence groups are Fuchsian groups. (English) Zbl 0733.57022

This paper presents a sketch of a complete solution of the well-known problem about discrete groups of homeomorphisms of the circle \(S^ 1\) with a convergence property, i.e., the convergence groups [see F. Gehring and G. Martin, Proc. Lond. Math. Soc., III. Ser. 55, 331- 358 (1987; Zbl 0628.30027)]. Namely, the author proves that any such group is conjugate in \(Homeo(S^ 1)\) to the restriction of a Fuchsian group in the unit disc B, \(\partial B=S^ 1\). This gives a new proof of the Nielsen realization problem [S. Kerckhoff, Ann. Math., II. Ser. 117, 235-265 (1983; Zbl 0528.57008)] and completes arguments of G. Mess [The Seifert conjecture and groups which are coarse quasi isometric to planes, Preprint] and P. Scott [Ann. Math., II. Ser. 117, 35-70 (1983; Zbl 0516.57006)] giving a proof of the Seifert fiber space conjecture:
Corollary. Let M be a compact, orientable, irreducible (i.e. every smooth embedded \(S^ 2\) bounds a 3-cell) 3-manifold with infinite \(\pi_ 1\), then M is a Seifert fibered space if and only if \(\pi_ 1(M)\) contains a cyclic normal subgroup.
The other corollary is the Torus Theorem [see C. D. Feustel, Trans. Am. Math. Soc. 217, 1-43, 45-57 (1976; Zbl 0321.55006 and Zbl 0321.55007); and P. Scott, Am. J. Math. 102, 241-277 (1980; Zbl 0439.57004)]: If M is an orientable, irreducible 3-manifold and \(Z\oplus Z\subset \pi_ 1(M)\), then M is either Seifert fibered or contains an incompressible torus (i.e. an embedded torus whose induced \(\pi_ 1\) map is injective).
We remark that A. Casson and D. Jungreis [Convergence groups and Seifert fibered 3-manifolds, Preprint] have given a completely different proof of the main theorem. Also P. Tukia [J. Reine Angew. Math. 391, 1-54 (1988; Zbl 0644.30027)] proved the main result for convergence groups G without torsion elements of order greater than 3 and also in the case of non-compact action of G.

MSC:

57S25 Groups acting on specific manifolds
57N05 Topology of the Euclidean \(2\)-space, \(2\)-manifolds (MSC2010)
57M05 Fundamental group, presentations, free differential calculus
20H10 Fuchsian groups and their generalizations (group-theoretic aspects)
57N10 Topology of general \(3\)-manifolds (MSC2010)
Full Text: DOI

References:

[1] D. B. A. Epstein, Periodic flows on three-manifolds, Ann. of Math. (2) 95 (1972), 66 – 82. · Zbl 0231.58009 · doi:10.2307/1970854
[2] C. D. Feustel, On the torus theorem and its applications, Trans. Amer. Math. Soc. 217 (1976), 1 – 43. · Zbl 0321.55006
[3] C. D. Feustel, On the torus theorem for closed 3-manifolds, Trans. Amer. Math. Soc. 217 (1976), 45 – 57. · Zbl 0321.55007
[4] David Gabai, Convergence groups are Fuchsian groups, Ann. of Math. (2) 136 (1992), no. 3, 447 – 510. · Zbl 0785.57004 · doi:10.2307/2946597
[5] C. McA. Gordon and Wolfgang Heil, Cyclic normal subgroups of fundamental groups of 3-manifolds, Topology 14 (1975), no. 4, 305 – 309. · Zbl 0331.57001 · doi:10.1016/0040-9383(75)90014-2
[6] F. W. Gehring and G. J. Martin, Discrete quasiconformal groups. I, Proc. London Math. Soc. (3) 55 (1987), no. 2, 331 – 358. · Zbl 0628.30027 · doi:10.1093/plms/s3-55_2.331
[7] Klaus Johannson, Homotopy equivalences of 3-manifolds with boundaries, Lecture Notes in Mathematics, vol. 761, Springer, Berlin, 1979. · Zbl 0412.57007
[8] William H. Jaco and Peter B. Shalen, Seifert fibered spaces in 3-manifolds, Mem. Amer. Math. Soc. 21 (1979), no. 220, viii+192. · Zbl 0471.57001 · doi:10.1090/memo/0220
[9] Steven P. Kerckhoff, The Nielsen realization problem, Ann. of Math. (2) 117 (1983), no. 2, 235 – 265. · Zbl 0528.57008 · doi:10.2307/2007076
[10] H. Kneser, Gerschlossene Flachen in dreidimensionalen Mannigfaltigkeiten, Jahres. der Deut. Math. Verein. 38 (1929), 248-260. · JFM 55.0311.03
[11] G. Mess, The Seifert conjecture and groups which are coarse quasi isometric to planes, preprint.
[12] J. Milnor, A unique decomposition theorem for 3-manifolds, Amer. J. Math. 84 (1962), 1 – 7. · Zbl 0108.36501 · doi:10.2307/2372800
[13] Jakob Nielsen, Abbildungsklassen endlicher Ordnung, Acta Math. 75 (1943), 23 – 115 (German). · Zbl 0027.26601 · doi:10.1007/BF02404101
[14] Peter Scott, A new proof of the annulus and torus theorems, Amer. J. Math. 102 (1980), no. 2, 241 – 277. · Zbl 0439.57004 · doi:10.2307/2374238
[15] Peter Scott, There are no fake Seifert fibre spaces with infinite \?\(_{1}\), Ann. of Math. (2) 117 (1983), no. 1, 35 – 70. · Zbl 0516.57006 · doi:10.2307/2006970
[16] William P. Thurston, Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 3, 357 – 381. · Zbl 0496.57005
[17] Pekka Tukia, Homeomorphic conjugates of Fuchsian groups, J. Reine Angew. Math. 391 (1988), 1 – 54. · Zbl 0644.30027 · doi:10.1515/crll.1988.391.1
[18] Scott A. Wolpert, Geodesic length functions and the Nielsen problem, J. Differential Geom. 25 (1987), no. 2, 275 – 296. · Zbl 0616.53039
[19] Friedhelm Waldhausen, Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology 6 (1967), 505 – 517 (German). · Zbl 0172.48704 · doi:10.1016/0040-9383(67)90008-0
[20] F. Waldhausen, On the determination of some bounded 3-manifolds by their fundamental groups alone, Proc. Internat. Sympos. Topology, Hercy-Novi, Yugoslavia, 1968, pp. 331-332.
[21] Friedhelm Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math. (2) 87 (1968), 56 – 88. · Zbl 0157.30603 · doi:10.2307/1970594
[22] Heiner Zieschang, Finite groups of mapping classes of surfaces, Lecture Notes in Mathematics, vol. 875, Springer-Verlag, Berlin, 1981. · Zbl 0472.57006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.