×

The classical trilogarithm, algebraic \(K\)-theory of fields, and Dedekind zeta functions. (English) Zbl 0731.19006

Let \(F\) be a number field with discriminant \(d_ F\) and with \(r_ 1\) real and \(r_ 2\) pairs of complex conjugate embeddings \(\sigma_ j: F\to {\mathbb{C}}\), \(1\leq j\leq r_ 1+r_ 2\). Consider the homomorphism \(\Delta\) : \({\mathbb{Q}}[{\mathbb{P}}^ 1_ F\setminus \{0,1,\infty \}]\to (\wedge^ 2F^{\times}\otimes F^{\times})\otimes {\mathbb{Q}}\) with \(\Delta\) : \(\{\) \(x\}\mapsto (1-x)\wedge x\otimes x\). Also, write \({\mathcal L}_ 3(z)={\mathfrak R}[\text{Li}_ 3(z)-\log | z| \cdot \text{Li}_ 2(z)+(1/3)\log^ 2| z| \cdot \text{Li}_ 1(z)]\) for the ‘cleaned’ trilogarithm function. This function \({\mathcal L}_ 3\) is real-analytic on \({\mathbb{P}}^ 1_{{\mathbb{C}}}\{0,1,\infty \}\) and continuous on all of \({\mathbb{P}}^ 1_{{\mathbb{C}}}\). Then the main result announced in this paper says: There exist \(y_ 1,...,y_{r_ 1+r_ 2}\in \text{Ker}\, \Delta \subset {\mathbb{Q}}[{\mathbb{P}}^ 1_ F\setminus \{0,1,\infty \}]\) such that the Dedekind zeta function \(\zeta_ F(s)\) of \(F\) satisfies: \[ \zeta_ F(3)=\frac{\pi^{3r_ 2}}{\sqrt{| d_ F|}}\cdot \det ({\mathcal L}_ 3(\sigma_ iy_ i))_{1\leq i,j\leq r_ 1+r_ 2}. \] For \(s=2\) a similar result in terms of the dilogarithm was proved by D. Zagier, and, in fact, similar expressions for \(\zeta_ F(s)\), for all integers \(s\geq 3\), are conjectured by Zagier. Zagier’s conjecture amounts to the construction of higher Bloch groups \({\mathcal B}_ m(F)\) and canonical maps \({\mathcal B}_ m(F)\to K_{2m-1}(F)\) with finite kernels and cokernels such that the composition with Borel’s regulator map \(K_{2m- 1}(F)\otimes {\mathbb{Q}}\to {\mathbb{R}}^{r_ 2}\) or \({\mathbb{R}}^{r_ 1+r_ 2}\), according to whether m is even or odd, coincides with a well-defined expression \(P_ m\) involving the higher polylogarithm functions \(\text{Li}_ 1,...,\text{Li}_ m\). For the value \(\zeta_ F(m)\) one should have an expression similar to the one above, with \({\mathcal L}_ 3\) replaced by \(P_ m\). In this paper a geometric construction of \({\mathcal B}_ 3(F)\) is given and \({\mathcal B}_ 3(F)\otimes {\mathbb{Q}}\) is shown to be the quotient \({\mathbb{Q}}[{\mathbb{P}}^ 1_ F\setminus \{0,1,\infty \}]/R_ 3\), where \(R_ 3\) is an expression determined by suitable configurations of seven points in \({\mathbb{P}}^ 2_ F\). Thus \(R_ 3\) depends on three parameters and it is announced to lead to a functional equation for \({\mathcal L}_ 3\) involving 22 terms. For a special configuration this functional equation reduces to the Spence-Kummer equation. It is conjectured that any functional equation for \({\mathcal L}_ 3\) can be formally deduced from this functional equation together with two obvious ones.

MSC:

19F27 Étale cohomology, higher regulators, zeta and \(L\)-functions (\(K\)-theoretic aspects)
11G55 Polylogarithms and relations with \(K\)-theory
11R70 \(K\)-theory of global fields
11R42 Zeta functions and \(L\)-functions of number fields
Full Text: DOI

References:

[1] A. A. Beilinson, Polylogarithm and cyclotomic elements, preprint 1989.
[2] A. Beĭlinson, Height pairing between algebraic cycles, Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985) Contemp. Math., vol. 67, Amer. Math. Soc., Providence, RI, 1987, pp. 1 – 24. · doi:10.1090/conm/067/902590
[3] S. Bloch, Higher regulators, algebraic K-theory and zeta functions of elliptic curves, Lecture Notes, University of California, Irvine, 1977.
[4] Armand Borel, Cohomologie de \?\?_{\?} et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 4 (1977), no. 4, 613 – 636 (French). · Zbl 0382.57027
[5] Richard M. Hain and Robert MacPherson, Higher logarithms, Illinois J. Math. 34 (1990), no. 2, 392 – 475. · Zbl 0737.14014
[6] E. E. Kummer, J. Pure Appl., (Crelle) 21 (1840).
[7] Leonard Lewin, Polylogarithms and associated functions, North-Holland Publishing Co., New York-Amsterdam, 1981. With a foreword by A. J. Van der Poorten. · Zbl 0465.33001
[8] S. Lichtenbaum, Values of zeta-functions at nonnegative integers, Number theory, Noordwijkerhout 1983 (Noordwijkerhout, 1983) Lecture Notes in Math., vol. 1068, Springer, Berlin, 1984, pp. 127 – 138. · doi:10.1007/BFb0099447
[9] John Milnor, Introduction to algebraic \?-theory, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1971. Annals of Mathematics Studies, No. 72. · Zbl 0237.18005
[10] John W. Milnor and John C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211 – 264. · Zbl 0163.28202 · doi:10.2307/1970615
[11] Dinakar Ramakrishnan, Analogs of the Bloch-Wigner function for higher polylogarithms, Applications of algebraic \?-theory to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983) Contemp. Math., vol. 55, Amer. Math. Soc., Providence, RI, 1986, pp. 371 – 376. · doi:10.1090/conm/055.1/862642
[12] W. Spence, An essay on logarithmic transcendents, London and Edinburgh, 1809, pp. 26-34.
[13] A. A. Suslin, Algebraic \?-theory of fields, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) Amer. Math. Soc., Providence, RI, 1987, pp. 222 – 244.
[14] A. A. Suslin, Homology of \?\?_{\?}, characteristic classes and Milnor \?-theory, Algebraic \?-theory, number theory, geometry and analysis (Bielefeld, 1982) Lecture Notes in Math., vol. 1046, Springer, Berlin, 1984, pp. 357 – 375. , https://doi.org/10.1007/BFb0072031 A. A. Suslin, Homology of \?\?_{\?}, characteristic classes and Milnor \?-theory, Trudy Mat. Inst. Steklov. 165 (1984), 188 – 204 (Russian). Algebraic geometry and its applications.
[15] Don Zagier, The Bloch-Wigner-Ramakrishnan polylogarithm function, Math. Ann. 286 (1990), no. 1-3, 613 – 624. · Zbl 0698.33001 · doi:10.1007/BF01453591
[16] Don Zagier, Hyperbolic manifolds and special values of Dedekind zeta-functions, Invent. Math. 83 (1986), no. 2, 285 – 301. · Zbl 0591.12014 · doi:10.1007/BF01388964
[17] Don Zagier, Polylogarithms, Dedekind zeta functions and the algebraic \?-theory of fields, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 391 – 430. · Zbl 0728.11062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.