×

The convergence of a Galerkin approximation scheme for an extensible beam. (English) Zbl 0727.73093

The equation governing the transverse displacement of an extensible beam with hinged ends is treated by a semi-discrete Galerkin approximate scheme. The rate of convergence and error estimates are discussed. A fully discrete scheme applying Crank-Nicolson time discretization is also discussed.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74H45 Vibrations in dynamical problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

References:

[1] [1] G. A. BAKER & J. H. BRAMBLE, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numer. 13 (1979), 75-100. Zbl0405.65057 MR533876 · Zbl 0405.65057
[2] J. M. BALL, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl. 42 (1973), 61-90. Zbl0254.73042 MR319440 · Zbl 0254.73042 · doi:10.1016/0022-247X(73)90121-2
[3] I. CHRISTIE & J. M. SANZ-SERNA, A Galerkin method for a nonlinear integro-differential wave system, Comp. Meth. Appl. Mech. Eng. 44 (1984), 229-237. Zbl0525.73089 MR757058 · Zbl 0525.73089 · doi:10.1016/0045-7825(84)90144-0
[4] R. COURANT & D. HILBERT, Methods of Mathematical Physics, Vol. 1, Wiley-Interscience, New York, 1953. Zbl0051.28802 MR65391 · Zbl 0051.28802
[5] R. W. DICKEY, Free vibrations and dynamic buckling of an extensible beam, Math. Anal. Appl. 29 (1970), 443-454. Zbl0187.04803 MR253617 · Zbl 0187.04803 · doi:10.1016/0022-247X(70)90094-6
[6] T. GEVECI, On the convergence of Galerkin approximation schemes for second-order hyperbolic equations in energy and negative norms, Math. Compt. 42 (1984), 393-415. Zbl0553.65082 MR736443 · Zbl 0553.65082 · doi:10.2307/2007592
[7] P. HOLMES & J. MARSDEN, Bifurcation to divergence and flutter in flow-induced oscillations : An infinite dimensional analysis, Automatica 14 (1978), 367-384. Zbl0385.93028 MR495662 · Zbl 0385.93028 · doi:10.1016/0005-1098(78)90036-5
[8] J. RAUCH, On convergence of the finite element method for the wave equation, SIAM J. Numer. Anal. 22 (1985), 245-249. Zbl0575.65091 MR781318 · Zbl 0575.65091 · doi:10.1137/0722015
[9] J. M. SANZ-SERNA, Methods for the numerical solution of the nonlinear Schroedinger equation, Math. Compt. 43 (1984), 21-27. Zbl0555.65061 MR744922 · Zbl 0555.65061 · doi:10.2307/2007397
[10] G. STRANG & G. J. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N.J., 1973. Zbl0356.65096 MR443377 · Zbl 0356.65096
[11] V. THOMÉE, Negative norm estimates and superconvergence in Galerkin methods for parabolic problems, Math. Compt. 34 (1980), 99-113. Zbl0454.65077 MR551292 · Zbl 0454.65077 · doi:10.2307/2006222
[12] V. THOMÉE, Galerkin Finite Element Methods for Parabolic Problems, Springer lecture Notes in Mathematics v. 1054, Springer-Verlag, Berlin, 1984. Zbl0528.65052 MR744045 · Zbl 0528.65052 · doi:10.1007/BFb0071790
[13] S. WOINOWSKY-KRIEGER, The effect of the axial force on the vibration of hinged bars, J. Appl. Mech, 17 (1950), 35-36. Zbl0036.13302 MR34202 · Zbl 0036.13302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.