×

Two-dimensional time-reversal-invariant topological insulators via Fredholm theory. (English) Zbl 07259470

Summary: We study spinful non-interacting electrons moving in two-dimensional materials which exhibit a spectral gap about the Fermi energy as well as time-reversal invariance. Using Fredholm theory we revisit the (known) bulk topological invariant, define a new one for the edge, and show their equivalence (the bulk-edge correspondence) via homotopy.

MSC:

47A53 (Semi-) Fredholm operators; index theories
35Q99 Partial differential equations of mathematical physics and other areas of application

References:

[1] Altland, A.; Zirnbauer, MR, Nonstandard symmetry classes in mesoscopic normalsuperconducting hybrid structures, Phys. Rev. B., 55, 1142-1161 (1997)
[2] Schnyder, AP, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B., 78, 195125 (2008)
[3] Ryu, S., Topological insulators and superconductors: Tenfold way and dimensional hierarchy, J. Phys., 12, 6, 065010 (2010)
[4] Kitaev, A., Periodic table for topological insulators and superconductors, AIP Conf. Proc., 1134, 1, 22-30 (2009) · Zbl 1180.82221
[5] Klitzing, KV; Dorda, G.; Pepper, M., New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance, Phys. Rev. Lett., 45, 494-497 (1980)
[6] Fröhlich, J.; Studer, UM, Gauge invariance and current algebra in nonrelativistic many-body theory, Rev. Mod. Phys., 65, 733-802 (1993)
[7] Kane, CL; Mele, EJ, Z2 topological order and the quantum spin hall effect, Phys. Rev. Lett., 95, 146802 (2005)
[8] Fu, L.; Kane, CL, Topological insulators with inversion symmetry, Phys. Rev. B., 76, 045302 (2007)
[9] Bernevig, BA; Hughes, TL; Zhang, S-C, Quantum spin hall effect and topological phase transition in HgTe quantum wells, Science, 314, 5806, 1757-1761 (2006)
[10] König, M., The quantum spin hall effect: Theory and experiment, Journal of the Physical Society of Japan, 77, 3, 031007 (2008)
[11] Roth, A., Nonlocal transport in the quantum spin hall state, Science, 325, 5938, 294-297 (2009)
[12] Brüne, C., Evidence for the ballistic intrinsic spin Hall effect in HgTe nanostructures, Nat. Phys., 6, 448 EP (2010)
[13] Brüne, C., Spin polarization of the quantum spin Hall edge states, Nat. Phys., 8, 6, 485 (2012)
[14] Hsieh, D., A topological Dirac insulator in a quantum spin Hall phase, Nature, 452, 970 EP (2008)
[15] Thouless, DJ, Quantized hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett., 49, 405-408 (1982)
[16] Milnor, JW; Stasheff, JD, Characteristic Classes (1974), Princeton: Princeton University Press, Princeton · Zbl 0298.57008
[17] De Nittis, G.; Gomi, K., Classification of “Quaternionic” Bloch-Bundles, Commun. Math. Phys., 339, 1, 1-55 (2015) · Zbl 1326.57047
[18] Nittis, G.D., Gomi, K.: Differential geometric invariants for time-reversal symmetric Bloch-bundles II: The low dimensional “Quaternionic” case (2018) arXiv:1809.05155 [math-ph] · Zbl 1346.57024
[19] Bellissard, J.; van Elst, A.; Schulz-Baldes, H., The noncommutative geometry of the quantum Hall effect, J. Math. Phys., 35, 5373-5451 (1994) · Zbl 0824.46086
[20] Hatsugai, Y., Chern number and edge states in the integer quantum Hall effect, Phys. Rev. Lett., 71, 3697-3700 (1993) · Zbl 0972.81712
[21] Kellendonk, J., Richter, T., Schulz-Baldes, H.: Edge current channels and chern numbers in the integer quantum hall effect. Rev. Math. Phys., 14(01) (2002) · Zbl 1037.81106
[22] Elbau, P.; Graf, GM, Equality of bulk and edge Hall conductance revisited, Commun. Math. Phys., 229, 3, 415-432 (2002) · Zbl 1001.81091
[23] Elgart, A.; Graf, GM; Schenker, J., Equality of the bulk and edge Hall conductances in a mobility gap, Commun. Math. Phys., 259, 1, 185-221 (2005) · Zbl 1086.81081
[24] Taarabt, A.: Equality of bulk and edge Hall conductances for continuous magnetic random Schrödinger operators (2014) arXiv:1403.7767
[25] Drouot, A.: The bulk-edge correspondence for continuous honeycomb lattices (2019) arXiv:1901.06281 · Zbl 1428.82009
[26] Graf, GM; Porta, M., Bulk-edge correspondence for two-dimensional topological insulators, Commun. Math. Phys., 324, 3, 851-895 (2013) · Zbl 1291.82120
[27] Graf, G.M., Shapiro, J.: The bulk-edge correspondence for disordered chiral chains. Commun. Math. Phys., 363 (2018) · Zbl 1401.82031
[28] Kubota, Y., Controlled topological phases and bulk-edge correspondence, Commun. Math. Phys., 349, 2, 493-525 (2017) · Zbl 1357.82013
[29] Bourne, C.; Kellendonk, J.; Rennie, A., The k-theoretic bulk-edge correspondence for topological insulators, Annales Henri Poincaré, 18, 5, 1833-1866 (2017) · Zbl 1372.82023
[30] Sadel, C.; Schulz-Baldes, H., Topological boundary invariants for floquet systems and quantum walks, Math. Phys. Anal. Geom., 20, 4, 22 (2017) · Zbl 1413.46061
[31] Graf, GM; Tauber, C., Bulk-edge correspondence for two-dimensional floquet topological insulators, Annales Henri Poincaré, 19, 3, 709-741 (2018) · Zbl 1392.82008
[32] Shapiro, J.; Tauber, C., Strongly disordered floquet topological systems, Annales Henri Poincarés, 20, 6, 1837-1875 (2019) · Zbl 1482.82051
[33] Schulz-Baldes, H., Z2-indices of odd symmetric Fredholm operators, Documenta Mathematica, 20, 1481 (2015) · Zbl 1341.47014
[34] Katsura, H.; Koma, T., The Z2 index of disordered topological insulators with time reversal symmetry, J. Math. Phys., 57, 2, 021903 (2016) · Zbl 1341.82043
[35] Avila, JC; Schulz-Baldes, H.; Villegas-Blas, C., Topological invariants of edge states for periodic two-dimensional models, Math. Phys. Anal. Geom., 16, 2, 137-170 (2013) · Zbl 1271.81210
[36] Alldridge, A., Max, C., Zirnbauer, M.R.: Bulk-boundary correspondence for disordered free-fermion topological phases. Communications in Mathematical Physics (2019) · Zbl 1446.81043
[37] Atiyah, MF; Singer, IM, Index theory for skew-adjoint fredholm operators, Publications Mathématiques de l’Institut des Hautes Études Scientifiques, 37, 1, 5-26 (1969) · Zbl 0194.55503
[38] Bellissard, J.: K-theory of C*-algebras in solid state physics. In: Dorlas, T.C., Hugenholtz, N.M., Winnink, M. (eds.) Statistical Mechanics and Field Theory: Mathematical Aspects, pp 99-156. Springer, Berlin (1986) · Zbl 0612.46066
[39] Avron, JE; Seiler, R.; Simon, B., Charge deficiency, charge transport and comparison of dimensions, Comm. Math. Phys., 159, 2, 399-422 (1994) · Zbl 0822.47056
[40] Booss, B., Bleecker, D.: Topology and Analysis: The Atiyah-Singer Index Formula and Gauge-Theoretic Physics. Springer (1989) · Zbl 0551.58031
[41] Hasan, MZ; Kane, CL, Colloquium: Topological insulators, Rev. Mod. Phys., 82, 3045-3067 (2010)
[42] Prodan, E., Schulz-Baldes, H.: Bulk and Boundary Invariants for Complex Topological Insulators: From K-Theory to Physics. Springer (2016) 10.1007/978-3-319-29351-6_4 · Zbl 1342.82002
[43] Li, Z., Mong, R.S.K.: A local formula for the Z2 invariant of topological insulators (2019) arXiv:1905.12649
[44] Lozano Viesca, E.; Schober, J.; Schulz-Baldes, H., Chern numbers as half-signature of the spectral localizer, J. Math. Phys., 60, 7, 072101 (2019) · Zbl 1421.82040
[45] Calderón, AP, The analytic calculation of the index of elliptic equations, Proc. Nat. Acad. Sci., 57, 5, 1193-1194 (1967) · Zbl 0152.11402
[46] Abrahams, E., Scaling theory of localization: Absence of quantum diffusion in two dimensions, Phys. Rev. Lett., 42, 673-676 (1979)
[47] Hikami, S.; Larkin, AI; Nagaoka, Y., Spin-orbit interaction and magnetoresistance in the two dimensional random system, Progress Theor. Phys., 63, 2, 707-710 (1980)
[48] Su, Y., Absence of localization in disordered two-dimensional electron gas at weak magnetic field and strong spin-orbit coupling, Sci. Rep., 6, 33304 EP (2016)
[49] Fröhlich, J.; Spencer, T., Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys., 88, 2, 151-184 (1983) · Zbl 0519.60066
[50] Aizenman, M.; Graf, GM, Localization bounds for an electron gas, J. Phys. A Math. Gen., 31, 6783-6806 (1998) · Zbl 0953.82009
[51] Germinet, F.; Klein, A.; Schenker, JH, Dynamical delocalization in random landau Hamiltonians, Ann. Math., 166, 1, 215-244 (2007) · Zbl 1159.82009
[52] Kitaev, A., Anyons in an exactly solved model and beyond, Ann. Phys., 321, 3, 48-63 (2006)
[53] Aizenman, M., Warzel, S.: Random operators. Amer. Math Soc. (2015) · Zbl 1333.82001
[54] Davies, EB, The functional calculus, J. London Math. Soc., 52, 1, 166-176 (1995) · Zbl 0858.47012
[55] Kane, CL; Mele, EJ, Z2 topological order and the quantum spin hall effect, Phys. Rev. Lett., 95, 146802 (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.