×

The parameter \(R^ 2\) in multiquadric interpolation. (English) Zbl 0725.65009

For bivariate interpolation to the data \((x_ i,y_ i,z_ i)\) where the \((x_ i,y_ i)\) are arbitrary points the multiquadric method has been frequently applied [for references, see: R. L. Hardy, Comput. Math. Appl. 19, 163-208 (1990; Zbl 0692.65003)]. The accuracy of the method depends on a user defined parameter \(R^ 2\). In the present paper some observations and useful recommendations about \(R^ 2\) are given and an algorithm, heavily dependent on the \(z_ i\), is proposed for the computation of its optimal value.

MSC:

65D05 Numerical interpolation
41A05 Interpolation in approximation theory

Citations:

Zbl 0692.65003

Software:

QSHEP2D; LINPACK
Full Text: DOI

References:

[1] Hardy, R. L., Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res., 76, 1905-1915 (1971)
[2] Franke, R., A critical comparison of some methods for interpolation of scattered data, Naval Postgraduate School, Technical Report NPS-53-79-003 (1979)
[3] Franke, R., Scattered data interpolation: Tests of some methods, Math. Comp., 38, 181-200 (1982) · Zbl 0476.65005
[4] Micchelli, C. A., Interpolation of scattered data: Distance matrices and conditionally positive definite functions, Constr. Approx., 2, 11-22 (1986) · Zbl 0625.41005
[5] Madych, W. R.; Nelson, S. A., Multivariate interpolation: A variational theory (1983), Manuscript · Zbl 0703.41008
[6] Hardy, R. L.; Nelson, S. A., A multiquadric biharmonic representation and approximation of disturbing potential, Geophys. Res. Lett., 13, 18-21 (1986)
[7] Dyn, N.; Levin, D., Iterative solution of systems originating from integral equations and surface interpolation, SIAM J. Numer. Anal., 20, 377-390 (1983) · Zbl 0517.65096
[8] Buhmann, M. D., Convergence of univariate quasi-interpolation using multiquadrics, IMA J. Numer. Anal., 8, 365-383 (1988) · Zbl 0659.41003
[9] Powell, M. J.D., Radial basis functions for multivariate interpolation: A review, (Mason, J. C.; Cox, M. G., Algorithms for Approximation (1987), Oxford University Press: Oxford University Press Oxford), 143-167 · Zbl 0638.41001
[10] Buhmann, M. D.; Powell, M. J.D., Radial basis function interpolation on an infinite regular grid, (Mason, J. C.; Cox, M. G., Algorithms for Approximation II (1990), Chapman and Hall: Chapman and Hall London), 146-169 · Zbl 0749.41002
[11] Franke, R., Recent advances in the approximation of surfaces from scattered data, (Schumaker, L. L.; Chui, C. C.; Utreras, F., Topics in Multivariate Approximation (1987), Academic Press: Academic Press New York), 175-184
[12] Hardy, R. L., Theory and applications of the multiquadric-biharmonic method, Computer Math. Applic., 19, 163-208 (1990) · Zbl 0692.65003
[13] Nielson, G. M.; Foley, T. A., A survey of applications of an affine invariant norm, (Lyche, T.; Schumaker, L. L., Mathematical Methods in CAGD (1989), Academic Press: Academic Press New York), 445-467 · Zbl 0675.41012
[14] Foley, T. A., Interpolation and approximation of 3-D and 4-D scattered data, Computer Math. Applic., 13, 711-740 (1987) · Zbl 0635.65007
[15] Breaker, L. C., The space-time scale of variability in oceanic thermal structure off of the central California coast, Naval Postgraduate School, Technical Report NPS-68-84-001 (1983)
[16] Foley, T. A., Scattered data interpolation and approximation with error bounds, Computer Aided Geometric Design, 3, 163-177 (1986) · Zbl 0619.65005
[17] Barnhill, R. E.; Gregory, J. A., Compatible smooth interpolation in triangles, J. Approx. Theory, 15, 214-225 (1975) · Zbl 0348.41003
[18] Nielson, G. M., Coordinate free scattered data interpolation, (Schumaker, L. L.; Chui, C. C.; Utreras, F., Topics in Multivariate Approximation (1987), Academic Press: Academic Press New York), 175-184 · Zbl 0629.41003
[19] Duchon, J., Splines minimizing rotation invariant semi-norms in Sobelev spaces, (Schempp, W.; Zeller, K., Multivariate Approximation Theory (1975), Birkhauser: Birkhauser Basel), 85-100
[20] Dongarra, J. J.; Moler, C. B.; Bunch, J. R.; Stewart, G. W., LINPACK User’s Guide (1979), SIAM: SIAM Philadelphia, PA · Zbl 0476.68025
[21] Tarwater, A. E., A parameter study of Hardy’s multiquadric method for scattered data interpolation, Lawrence Livermore National Laboratory, Technical Report UCRL-53670 (1985)
[22] Pottmann, H.; Eck, M., Modified multiquadric methods for scattered data interpolation over a sphere, Computer Aided Geometric Design, 7, 313-322 (1990) · Zbl 0714.65010
[23] Foley, T. A.; Lane, D. A., Visualization of irregular multivariate data, (Kaufman, A., Visualization ’90 (1990), IEEE Computer Society: IEEE Computer Society Los Alamitos, CA), 247-254
[24] Nielson, G. M., A method for interpolation of scattered data based upon a minimum norm network, Math. Comp., 40, 253-271 (1983) · Zbl 0549.65005
[25] Nielson, G. M.; Franke, R., A method for construction of surfaces under tension, Rocky Mtn. J. Math., 14, 203-221 (1984) · Zbl 0551.65002
[26] Franke, R.; Nielson, G. M., Smooth interpolation to large sets of scattered data, Intern. J. Numer. Meth. Eng., 15, 1691-1704 (1980) · Zbl 0444.65011
[27] Renka, R. L., Algorithm 660: QSHEP2D: Quadratic Shepard method for bivariate interpolation to scattered data, ACM Trans. Math. Soft., 14, 149-150 (1988) · Zbl 0709.65504
[28] Farin, G. E., Surfaces over Dirichlet tessellations, Computer Aided Geometric Design, 7, 281-292 (1990) · Zbl 0728.65013
[29] Franke, R., Smooth interpolation of scattered data by local thin plate splines, Computer Math. Applic., 8, 273-281 (1982) · Zbl 0482.65008
[30] Kansa, E. J., Multiquadrics—A scattered data approximation scheme with applications to fluid dynamics-I. Surface approximations and partial derivative estimates, Computers Math. Applic., 19, 127-145 (1990) · Zbl 0692.76003
[31] Kansa, E. J., Multiquadrics—A scattered data approximation scheme with applications to fluid dynamics-II. Solutions to parabolic, hyperbolic and elliptical partial differential equations, Computers Math. Applic., 19, 147-161 (1990) · Zbl 0850.76048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.