×

Asymptotic solution of differential equations with small oscillatory coefficients. (English) Zbl 0722.34050

The asymptotic form of the solutions of the equation \(y^{(2n)}+(s_ 1y^{(n-1)})^{(n-1)}+...+(s_{n-1}y')'+s_ ny=0\) as \(x\to \infty\) is considered, where the \(s_ m\) are the product of a small factor \(\xi^ m\) and a periodic factor \(p_ m\), \(s_ m(x)=\xi^ m(x)p_ m(x)\quad (1\leq m\leq n),\) the mean value of \(p_ m\) being zero. The \(p_ m\) all have the same period which is taken to be \(2\pi\). In a previous paper [J. Lond. Math. Soc., II. Ser. 40, 507-518 (1989; Zbl 0707.34047)], the authors dealt with the situation where \(\xi\to 0\) slowly as, for example, when \(\xi (x)=x^{-\alpha}\) \((0<\alpha \leq 1)\). It was found that the solutions do not resemble those of the unperturbed equation \(y^{(2n)}=0.\)
Here the interest is in the case where \(\xi (x)=x^{-1}\eta (x)\) and \(\eta\) tends to zero slowly as, for example, when \(\eta (x)=(\log x)^{- \gamma}(\log \log x)^{-\delta}\quad (\gamma \geq 0,\quad \delta \geq 0).\) Subject to suitable conditions on \(\eta\), it is found that there are solutions \[ (*)\quad y_ k(x)\sim \exp (\int^{x}_{a}t^{-1}\nu_ k(t)dt), \] where the \(\nu_ k\) are the eigenvalues of a certain perturbation of the diagonal matrix \(\Lambda =diag(0,1,...,2n-1)\). A specific example of (*) is where \(s_ m=0\) (1\(\leq m\leq n-1)\) and \(x^{- 1}\eta^{4n}\) is L(a,\(\infty)\). Then \[ y_ k(x)\sim x^{k-1} \exp ((- 1)^{n+k+1}c\{(2n-k)!(k-1)!\}^{-1}\int^{x}_{a}t^{- 1}\eta^{2n}(t)dt), \] where \[ c=(2\pi)^{-1}\int^{\pi}_{- \pi}\{p_ n^{(-n)}(t)\}^ 2dt \] and (-n) refers to an n-fold integral of \(p_ n\). These results generalise long-standing ones due to P. Hartman and A. Wintner for the second-order case \(n=1\) [Am. J. Math. 75, 717-730 (1953)].
Reviewer: M.S.P.Eastham

MSC:

34E05 Asymptotic expansions of solutions to ordinary differential equations
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations

Citations:

Zbl 0707.34047
Full Text: DOI

References:

[1] A. S. A. Al-Hammadi and M.S.P. Eastham. Higher-order differential equations with small oscillatory coefficients, J. London Math. Soc., to appear. · Zbl 0707.34047
[2] M. Bôcher. On regular singular points of linear differential equations of the second order whose coefficients are not necessarily analytic, Trans. Amer. Math Soc. 1 (1900) 40–52. · JFM 31.0345.01 · doi:10.2307/1986402
[3] J. S. Cassell. The asymptotic behaviour of a class of linear oscillators, Quart. J. Math. (Oxford) (2) 32 (1981) 287–302. · Zbl 0485.34023 · doi:10.1093/qmath/32.3.287
[4] J. S. Cassell. The asymptotic integration of some oscillatory differential equations, Quart. J. Math. (Oxford) (2) 33 (1982) 281–296. · Zbl 0519.34027 · doi:10.1093/qmath/33.3.281
[5] M. S. P. Eastham. The asymptotic solution of linear differential systems, Mathematika 32 (1985) 131–138. · Zbl 0576.34053 · doi:10.1112/S0025579300010949
[6] M. S. P. Eastham. The asymptotic solution of linear differential systems (London Mathematical Society Monographs, Clarendon Press, Oxford, 1989). · Zbl 0674.34045
[7] S. Faedo. Il teorema di Fuchs per le equazione differenziali lineari a coefficienti non analitici e proprietà asintotiche delle soluzioni, Ann. Mat. Pura Appl. 25 (1946) 111–133. · Zbl 0061.18504 · doi:10.1007/BF02418080
[8] A. Ghizzetti. Un teorema sul comportamento asintotico degli integrali delle equazioni differenziali lineari omogenee, Rend. Mat. Appl. 8 (1949) 28–42. · Zbl 0039.09501
[9] P. Hartman and A. Wintner. On nonoscillatory linear differential equations, Amer. J. Math. 75 (1953) 717–730. · Zbl 0051.06503 · doi:10.2307/2372547
[10] O. Haupt. Über das asymptotische Verhalten der Losungen gewisser linearer gewöhnlicher Differentialgleichungen, Math. Z. 48 (1942) 289–292. · JFM 68.0186.02 · doi:10.1007/BF01180019
[11] J. Šimša. Asymptotic integration of a second-order ordinary differential equation, Proc. Amer. Math. Soc. 101 (1987) 96–100. · Zbl 0648.34038
[12] W. F. Trench. Asymptotic integration of linear differential equations subject to mild integral conditions, SIAM J. Math. Anal. 15 (1984) 932–942. · Zbl 0567.34008 · doi:10.1137/0515070
[13] W. F. Trench. Linear perturbations of a nonoscillatory second-order equation, Proc. Amer. Math. Soc. 97 (1986) 423–428. · Zbl 0594.34057 · doi:10.1090/S0002-9939-1986-0840623-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.