×

A deformation theory for non-isolated singularities. (English) Zbl 0721.32014

With this paper, we get enough knowledge of the deformation theory for non-isolated singularities. The contents are the following: § 1 The functor of admissible deformations (functors for hypersurfaces), § 2 Infinitesimal theory (deformations of \(\Sigma\), the complex D(\(\Sigma\),f)). § 3 Special conditions on \(\Sigma\) (the complex H(\(\sigma\),f), examples and applications).
§ 3 deals with the
Conjecture: Let f: \({\mathbb{C}}^ 3\to {\mathbb{C}}\) be a germ of a function with a one-dimensional reduced singular locus \(\Sigma\). The \(T^ 1(\Sigma,f)\) is only zero if f is right equivalent to the \(A_{\infty}\), \(D_{\infty}\) or \(T_{\infty,\infty,\infty}\)-singularity.
And the Question: Is it true that for space curve singularities the inequality \(\dim_{{\mathbb{C}}}(N^*/I)\geq 3\cdot \dim_{{\mathbb{C}}}(\int I/I^ 2)\) holds?
Huneke has shown that for a space curve singularity the following holds: \[ \dim_{{\mathbb{C}}}(\int I/I^ 2)\geq \left( \begin{matrix} t-1\\ 2\end{matrix} \right), \] where t denotes the Gorenstein type of \(\Sigma\) i.e. the number of generators of the dualizing module \(\omega_{\Sigma}\). In particular, \(\int I/I^ 2\) is never zero if \(\sigma\) is not a complete intersection. This implies that for \(f\in I^ 2\), \(\Sigma\) not a complete intersection, the base space of the semi-universal admissible deformation has at least two components.
[For special notations see the paper itself.]

MSC:

32S30 Deformations of complex singularities; vanishing cycles
Full Text: DOI

References:

[1] Artin, M., Deformations of Singularities (1976), Bombay: Tata Institute of Fundamental Research, Bombay · Zbl 0395.14003
[2] J. Bingener, Modulräume in der analytischen Geometrie I & II, Aspekte der Mathematik, Vieweg-Verlag. · Zbl 0644.32001
[3] R.-O. Buchweitz, Thesis, Universit’e Paris VII 1981.
[4] W. Bruns and U. Vetter, Determinantal Rings, SLN1327, Springer Verlag (1988). · Zbl 1079.14533
[5] Grauert, H., Über die Deformationen isolierter Singularitäten analytischer Mengen, Inv. Math., 15, 171-198 (1972) · Zbl 0237.32011 · doi:10.1007/BF01404124
[6] J. Herzog, Deformations of Certain Gorenstein Singularities, In: Seminaire d’Algèbre Paul Dubreil, SLN740, Springer-Verlag (1979), 230-236. · Zbl 0409.13003
[7] C. Huneke, The Invariants of Liaison, In: Algebraic Geometry Proceedings, Ann Arbor 1981, SLN1008, Springer-Verlag (1983), 65-74. · Zbl 0513.13009
[8] Huneke, C., The Primary Components and Integral Closure of Ideals in 3-Dimensional Regular Local Rings, Math. Ann., 275, 617-635 (1986) · Zbl 0605.13003 · doi:10.1007/BF01459141
[9] de Jong, T., The Virtual Number ofD∞ Points I, Topology, 29, 175-184 (1990) · Zbl 0752.32010 · doi:10.1016/0040-9383(90)90006-6
[10] T. de Jong and D. van Straten, Deformations of Non-Isolated Singularities, Preprint Utrecht, also part of the thesis of T. de Jong, Nijmengen 1988.
[11] T. de Jong and D. van Straten, Deformations of the Normalization of Hypersurfaces Singularities, Preprint University of Kaiserslautern 1990. · Zbl 0715.32013
[12] T. de Jong and D. van Straten, On the Base Space of the Semi-Universal Deformation of Rational Quadrupel Points, Preprint University of Kaiserslautern 1990.
[13] T. de Jong and D. van Straten, Disentanglements, Preprint University of Kaiserslautern 1989. To appear in the Proceedings of the Warwick Conference on Singularities.
[14] Lichtenbaum, S.; Schlessinger, M., The Cotangent Complex of a Morphism, Trans. Am. Math. Soc., 128, 41-70 (1967) · Zbl 0156.27201 · doi:10.2307/1994516
[15] Palamodov, V. P., Deformations of Complex Spaces, Russ. Math. Surv., 31, 126-197 (1976) · Zbl 0347.32009 · doi:10.1070/RM1976v031n03ABEH001549
[16] R. Pellikaan, Hypersurface Singularities and Resolutions of Jacobi Moduls, Thesis, Rijksuniversiteit Utrecht 1985. · Zbl 0589.32017
[17] R. Pellikaan, Deformations of Hypersurfaces with a One-Dimensional Singular Locus, Preprint Vrije Universiteit Amsterdam 1987. · Zbl 0733.32026
[18] Pellikaan, R., Projective Resolutions of the Quotient of Two Ideals, Indag. Math., 50, 65-84 (1988) · Zbl 0657.13014
[19] Schlessinger, M., Functors of Artin Rings, Trans. Am. Math. Soc., 130, 208-222 (1968) · Zbl 0167.49503 · doi:10.2307/1994967
[20] M. Schlessinger, On Rigid Singularities, In: Complex Analysis, Rice University Studies59 (1) (1973). · Zbl 0279.32006
[21] Siersma, D., Isolated Line Singularities, Proc. Sym. Pure Math., 40, 2, 405-496 (1983) · Zbl 0514.32007
[22] J. Stevens, On the Versal Deformation of Cyclic Quotient Singularities, Preprint University of Hamburg 1989. · Zbl 1315.14005
[23] B. Teissier, The Hunting of Invariants in the Geometry of Discriminants, In: Real and Complex Singularities, Oslo 1976, Proc. of the Nordic Summer School, Sijthoff & Noordhoff, Alphen a/d Rijn 1977. · Zbl 0388.32010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.