×

A small strain, moderately large deflection finite element beam model with cross-sectional warping effect. (English) Zbl 0718.73087

Summary: A finite element model that can be applied to helicopter rotor blades has been developed with a particular emphasis on the proper representation of out-of-plane warping of arbitrary cross-sections. The model can describe accurately coupled bending, torsion and extensional behavior of beams undergoing small strain, moderately large deflection. The model can also handle beams with arbitrary cross-sections, taper, pretwist and planform. A main feature of the present approach is to introduce small warping displacement superimposed over flat cross-sections of a shear-flexible beam in the direction of the reference axis in deformed configuration. The nonlinear equilibrium equation resulting from finite element approximation is solved by the Newton-Raphson method. Numerical tests involving simple isotropic beams demonstrate the validity of the present approach.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74B20 Nonlinear elasticity
Full Text: DOI

References:

[1] Bauchau, O. A.; Hong, C. H. (1987): Finite element approach to rotor blade modeling. J. of Amer. Helicopter Society 32
[2] Christensen, E. R.; Lee, S. W. (1986): Nonlinear finite element modeling of the dynamics of unrestrained flexible structures. Comput. & Struct. 23, 819-829 · Zbl 0589.73059 · doi:10.1016/0045-7949(86)90251-8
[3] Dowell, E. H.; Traybar, J.; Hodges, D. H. (1977): An experimental theoretical correlation study of non-linear bending and torsion deformations. J. Sound & Vibr. 50, 533-544 · doi:10.1016/0022-460X(77)90501-6
[4] Hodges, D. H. (1980): Torsion of pretwisted beams due to axial loading. ASME J. Appl. Mech. 47, 393-397 · Zbl 0432.73037 · doi:10.1115/1.3153675
[5] Hodges, D. H.; Ormiston, R. A.; Peters, D. A. (1986): In the nonlinear deformation geometry and Euler-Bernoulli beams. NASA TP 1566
[6] Hong, C. H.; Chopra, I. (1986): Aeroelastic stability analysis of a composite bearingless rotor blade. J. of Amer. Helicopter Society 31
[7] Iura, M.; Atluri, S.N. (1988): Dynamic analysis of finitely streched and rotated three-dimensional space-curved beams. Comput. & Struct. 29, 875-889 · Zbl 0666.73044 · doi:10.1016/0045-7949(88)90355-0
[8] Krenk, S. (1983): A linear theory for pretwisted elastic beams. ASME J. Appl. Mech. 50, 137-142 · Zbl 0511.73051 · doi:10.1115/1.3166980
[9] Lee, S. W.; Kim, Y. H. (1987): A new approach to the finite element modeling of beams with warping effect. Int. J. Num. Meth. Eng. 24, 2327-2341 · Zbl 0623.73094 · doi:10.1002/nme.1620241207
[10] Peterson, D. (1982): Interaction of torsion and tension in beam theory. Vertica 6, 311-325
[11] Rhiu, J. J.; Lee, S. W. (1987): A new efficient mixed formulation for thin shell finite element models. Int. J. Num. Meth. Eng. 24, 581-604 · Zbl 0602.73078 · doi:10.1002/nme.1620240309
[12] Rosen, A. (1980): The effect of initial twist on the torsional rigidity of beams - another point of view. ASME J. Appl. Mech. 47, 389-392 · Zbl 0501.73044 · doi:10.1115/1.3153674
[13] Rosen, A. (1983): Theoretical and experimental investigation of the nonlinear torsion and extension of initially twisted bars. ASME J. Appl. Mech. 50, 321-326 · Zbl 0518.73041 · doi:10.1115/1.3167039
[14] Simo, J. C.; Vu-Quoc, L. (1986): A three-dimensional finite-strain rod model. Part 2: Computational Aspects. Comput. Meth. Appl. Mech. Eng. 58, 79-116 · Zbl 0608.73070 · doi:10.1016/0045-7825(86)90079-4
[15] Wekezer, J. W. (1984): Elastic torsion of thin walled bars of variable cross sections. Comput. & Struc. 19, 401-407; Krenk, S.; Gunneskov, O. (1981): Statics of thin-walled prewisted beams. Int. J. Num. Meth. Eng. 17, 1407-1426 · Zbl 0551.73076 · doi:10.1016/0045-7949(84)90049-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.