×

Boolean valued interpretation of Banach space theory and module structures of von Neumann algebras. (English) Zbl 0718.46032

The author uses set-theoretic methods to study the module structure of Von Neumann algebras by replacing the field of complex numbers by a commutative \(AW^*\)-algebras Z. A normed Z-module X is a Z-module with norm \(\| \cdot \|\) which satisfies \(\| ax\| \leq \| a\|_{\infty}\| x\|\) for all a in Z and x in X. Denote the space of all bounded Z-linear maps from the normed Z-module X to the normed Z-module Y by \(Hom_ Z(X,Y)\). Let \(X^{\#}\) be \(Hom_ Z(X,Z)\), the Z-dual of X. A \(C^*\)-algebra which contains Z as a unital \(sub\)- C\({}^*\)-algebra of the centre Z(A) of A is said to be
Z-dual if there is a normed Z-module X such that A is isometrically Z- isomorphic to \(X^{\#},\)
Z-bi-dual if there is a normed Z-module X such that A is isometrically Z- isomorphic to \(X^{\#\#}\), and
Z-self-dual if A is isometrically Z-isomorphic to \(A^{\#}.\)
A \(C^*\)-algebra B is said to be Z-embeddable if there exists a Type I \(AW^*\)-algebra L with centre Z and a *-isomorphism \(\pi\) from B to L such that \(\pi\) (B) coincides with its double commutant \(\pi (B)''.\)
The first three main applications of the author’s theory are:
(i) A is Z-dual if and only if A is Z-embeddable;
(ii) If Z coincides with the centre of A then A is Z-bi-dual if and only if it is a Type I \(AW^*\)-algebra;
(iii) If Z coincides with the centre of A then A is Z-self-dual if and only if it is a finite Type I \(AW^*\)-algebra.
Let X be a Banach Z-module. Then a function \(\| \cdot \|_ Z: X\to Z\) is called a Z-valued norm on X if: \[ \| x+y\|_ Z\leq \| x\|_ Z+\| y\|_ Z,\quad \| ax\|_ Z=| a| \| x\|_ Z,\quad \| x\|_ Z\geq 0,\quad \| x\|_ Z=0\quad if\text{ and } only\quad if\quad x=0. \] The Z-valued norm defines an induced norm \(\| \cdot \|\) on X by \(\| x\| =\| \| x\|_ Z\|_{\infty}.\) Clearly X is a Banach Z-module with its induced norm. Such an X is said to be a Kaplansky-Banach Z-module if and only if X is a Banach space with respect to its induced norm and, for each partition of unity \((b_ j)\) in Z and bounded family \((x_ j)\) in X there exists a (unique) x in X such that, for all j, \(b_ jx=b_ jx_ j\). The last main result is the following:
(iv) Let A be a Z-embeddable \(C^*\)-algebra and let \(A_{\#}\) be a Banach Z-module such that \((A_{\#})^{\#}\) is isometrically z- isomorphic to A. Then \(A_{\#}\) is a Kaplansky-Banach Z-module and if A is the Z-dual of another Kaplansky-Banach Z-module X then X is isometrically Z-isomorphic to \(A_{\#}.\)
This is a generalization of Sakai’s characterization of \(W^*\)- algebras.

MSC:

46L10 General theory of von Neumann algebras
46S20 Nonstandard functional analysis
46H25 Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
Full Text: DOI

References:

[1] DOI: 10.2307/2274110 · Zbl 0589.03032 · doi:10.2307/2274110
[2] Theory of Operator Algebras I (1979)
[3] DOI: 10.2140/pjm.1956.6.763 · Zbl 0072.12404 · doi:10.2140/pjm.1956.6.763
[4] J. London Math. Soc. 33 pp 347– (1986)
[5] DOI: 10.2748/tmj/1178244253 · Zbl 0113.09701 · doi:10.2748/tmj/1178244253
[6] DOI: 10.2307/1970133 · Zbl 0097.10705 · doi:10.2307/1970133
[7] Trans. Amer. Math. Soc. 153 pp 139– (1971)
[8] Axiomatic Set Theory (1973) · Zbl 0261.02038
[9] Japan. J. Math. 9 pp 207– (1983)
[10] J. London Math. Soc. 32 pp 141– (1985)
[11] Proc. Amer. Math. Soc. 93 pp 681– (1985)
[12] DOI: 10.2969/jmsj/03640589 · Zbl 0599.46083 · doi:10.2969/jmsj/03640589
[13] Proc. Japan Acad. 59A pp 368– (1983)
[14] DOI: 10.2969/jmsj/03540609 · Zbl 0526.46069 · doi:10.2969/jmsj/03540609
[15] DOI: 10.2307/1969540 · Zbl 0042.12402 · doi:10.2307/1969540
[16] DOI: 10.2977/prims/1195179842 · Zbl 0582.43005 · doi:10.2977/prims/1195179842
[17] DOI: 10.1090/S0002-9947-1985-0779056-9 · doi:10.1090/S0002-9947-1985-0779056-9
[18] DOI: 10.2977/prims/1195180884 · Zbl 0574.51012 · doi:10.2977/prims/1195180884
[19] Set Theory (1978)
[20] Categories for the Working Mathematician (1971) · Zbl 0232.18001
[21] Trans. Amer. Math. Soc. 148 pp 85– (1970)
[22] DOI: 10.2307/2372552 · Zbl 0051.09101 · doi:10.2307/2372552
[23] DOI: 10.1090/S0002-9947-1969-0241986-5 · doi:10.1090/S0002-9947-1969-0241986-5
[24] DOI: 10.2307/1969654 · Zbl 0047.35701 · doi:10.2307/1969654
[25] Lectures on Boolean algebras (1963) · Zbl 0114.01603
[26] DOI: 10.1016/0021-8693(83)90174-6 · Zbl 0538.20027 · doi:10.1016/0021-8693(83)90174-6
[27] Tsukuba J. Math. 6 pp 187– (1982) · Zbl 0533.20026 · doi:10.21099/tkbjm/1496159530
[28] Baer *-Rings (1972)
[29] DOI: 10.2969/jmsj/03510001 · Zbl 0488.46052 · doi:10.2969/jmsj/03510001
[30] Lecture Notes in Math. 915 pp 333– (1982)
[31] DOI: 10.2307/2273134 · Zbl 0427.03047 · doi:10.2307/2273134
[32] Lecture Notes in Math. 753 pp 714– (1979)
[33] Two Applications of Logic to Mathematics (1978)
[34] C*-Algebras and W*-Algebras (1971)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.