×

Effective discommensurations in the incommensurate ground states of the extended Frenkel-Kontorowa models. (English) Zbl 0716.34050

A multidimensional Frenkel-Kontorowa (FK) model is considered. Provided that the attached phonon spectrum has a nonzero gap, the authors prove that the hull function of an incommensurate ground state is purely discrete. The starting point is the well-known fact that for the 1- dimensional FK model the ground states are of two kinds: commensurate ones (periodic cycles) and incommensurate ones (KAM 1-tori). It follows readily from the result in the paper, that the Fourier coefficients of the incommensurate modulation are given by an analytic hull function.
Reviewer: S.I.Andersson

MSC:

34C28 Complex behavior and chaotic systems of ordinary differential equations
37A30 Ergodic theorems, spectral theory, Markov operators

References:

[1] Aubry, S.; Le Daeron, P. Y., Physica D, 8, 381-422 (1983) · Zbl 1237.37059
[2] Aubry, S., Physica D, 7, 240-258 (1983)
[3] Aubry, S., (Godreche, C., Structures et Instabilités (1986), Editions de Physique: Editions de Physique Paris), 73-194
[4] S. Aubry, P.Y. Le Daeron and G. André, unpublished preprint, Saclay (1982).; S. Aubry, P.Y. Le Daeron and G. André, unpublished preprint, Saclay (1982).
[5] (Steinhardt, P. J.; Ostlund, S., The Physics of Quasi-Crystals (1987), World Scientific: World Scientific Singapore), reprinted in: · Zbl 0997.82516
[6] MacKay, R. S.; Meiss, J. D.; Percival, I. C., Physica D, 27, 1 (1987) · Zbl 0622.58016
[7] S. Aubry, G. Abramovici, J.L. Raimbault and P. Quemerais, Bipolaronic chaotic states in the adiabatic Holstein model, in preparation.; S. Aubry, G. Abramovici, J.L. Raimbault and P. Quemerais, Bipolaronic chaotic states in the adiabatic Holstein model, in preparation. · Zbl 0900.82012
[8] (Schlenker, C., Low Dimensional Electronic Properties of Molybdenum Bronzes and Oxides (1989), Kluwer: Kluwer Dordrecht)
[9] MacMillan, W. L., Phys. Rev. B, 14, 1496 (1976)
[10] Aubry, S.; Abramovici, G., Chaotic trajectories in the standard map. The concept of anti-integrability, Physica D, 43, 199-219 (1990) · Zbl 0713.58014
[11] Blank, M. L., Nonlinearity, 2, 1-22 (1989) · Zbl 0676.49001
[12] Vallet, F., (Ph.D. Dissertation (1986), Université Pierre et Marie Curie)
[13] Vallet, F.; Aubry, S.; de Seze, L., (5th General Conference of the Condensed Matter Division of the EPS. 5th General Conference of the Condensed Matter Division of the EPS, Berlin, RFA (March 18-22, 1985)), unpublished
[14] Aubry, S.; Axel, F.; Vallet, F., J. Phys. C, 18, 753-788 (1985)
[15] Goroff, D., Ergod. Therm. Dynam. Sys., 5, 337 (1987)
[16] MacKay, R., J. Phys. A, 20 (1987) · Zbl 0627.58036
[17] Fathi, A., Commun. Math. Phys., 126, 249-262 (1989) · Zbl 0819.58026
[18] Rudin, W., Real and Complex Analysis (1979), MacGraw-Hill: MacGraw-Hill New York
[19] Kolmogorov, A. N.; Fomin, S. V., Introductory Real Analysis (1975), Dover: Dover New York · Zbl 0213.07305
[20] Shenker, S.; Kadanoff, L., J. Stat. Phys., 27, 631 (1982) · Zbl 0925.58021
[21] (Toledano, J. C., Common Problems of Quasi-crystals, Liquid Crystals and Incommensurate Insulators. Common Problems of Quasi-crystals, Liquid Crystals and Incommensurate Insulators, Grèce. Common Problems of Quasi-crystals, Liquid Crystals and Incommensurate Insulators. Common Problems of Quasi-crystals, Liquid Crystals and Incommensurate Insulators, Grèce, Proceedings of NATO Advanced Research Workshop (Preveza) (1989))
[22] Johanneson, H.; Schaub, B.; Suhl, H., Phys. Rev. B, 37, 9625-9637 (1988)
[23] Peyrard, M.; Aubry, S., J. Phys. C, 16, 1593-1608 (1983)
[24] Vallet, F.; Schilling, R.; Aubry, S., Europhys. Lett., 2, 815-822 (1986)
[25] Vallet, F.; Schilling, R.; Aubry, S., J. Phys. C, 21, 67-105 (1988)
[26] S. Aubry, The concept of anti-integrability: definition, theorems and applications to the standard map, in: Proceedings of the IMA (Minneapolis), Twist Mappings and their Applications, submitted for publication.; S. Aubry, The concept of anti-integrability: definition, theorems and applications to the standard map, in: Proceedings of the IMA (Minneapolis), Twist Mappings and their Applications, submitted for publication. · Zbl 0760.58033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.