×

On infinite-dimensional manifold triples. (English) Zbl 0713.57010

Let \(Q=[-1,1]^{\omega}\), \(s=(-1,1)^{\omega}\), \(\Sigma =\{(x_ i)\in s:\sup | x_ i| <1\}\), and \(\sigma =\{(x_ i)\in s:\) \(x_ i=0\) for almost all \(i\}\). The authors study triples of spaces (X,M,N) that are locally homeomorphic, as triples, to either (Q,\(\Sigma\),\(\sigma\)) or (s,\(\Sigma\),\(\sigma\)). The main tools for this study come from an examination of the notion of cap set and f.d. cap set in the setting of pairs, and the main result is the equivalence of the following three conditions where X is a Q- (resp. s-) manifold and \(N\subset M\subset X:\) (1) the triple (X,M,N) is a (Q,\(\Sigma\),\(\sigma\))- (resp. (s,\(\Sigma\),\(\sigma\))-) manifold triple; (2) (M,N) is a cap- (resp. f.d. cap-) pair for X; (3) M is a strong cap set for the pair (X,N) and N is an f.d. cap set for X. Some applications of this main result are included.
Reviewer: R.Sher

MSC:

57N20 Topology of infinite-dimensional manifolds
Full Text: DOI

References:

[1] R. D. Anderson, Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 72 (1966), 515 – 519. · Zbl 0137.09703
[2] R. D. Anderson, Strongly negligible sets in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 64 – 67. · Zbl 0195.53602
[3] -, On sigma-compact subsets of infinite-dimensional spaces, unpublished manuscript.
[4] R. D. Anderson and T. A. Chapman, Extending homeomorphisms to Hilbert cube manifolds, Pacific J. Math. 38 (1971), 281 – 293. · Zbl 0227.57004
[5] R. D. Anderson, David W. Henderson, and James E. West, Negligible subsets of infinite-dimensional manifolds, Compositio Math. 21 (1969), 143 – 150. · Zbl 0185.50803
[6] R. D. Anderson and John D. McCharen, On extending homeomorphisms to Fréchet manifolds, Proc. Amer. Math. Soc. 25 (1970), 283 – 289. · Zbl 0203.25805
[7] R. D. Anderson and R. Schori, Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969), 315 – 330. · Zbl 0187.20505
[8] C. Bessaga and A. Pełczyński, The estimated extension theorem, homogeneous collections and skeletons, and their applications to the topological classification of linear metric spaces and convex sets, Fund. Math. 69 (1970), 153 – 190. · Zbl 0204.12801
[9] -, Selected topics in infinite-dimensional topology, Monogr. Mat. 58, PWN, Warsaw, 1970.
[10] Mladen Bestvina and Jerzy Mogilski, Characterizing certain incomplete infinite-dimensional absolute retracts, Michigan Math. J. 33 (1986), no. 3, 291 – 313. · Zbl 0629.54011 · doi:10.1307/mmj/1029003410
[11] T. A. Chapman, Dense sigma-compact subsets of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 154 (1971), 399 – 426. · Zbl 0208.51903
[12] T. A. Chapman, Lectures on Hilbert cube manifolds, American Mathematical Society, Providence, R. I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975; Regional Conference Series in Mathematics, No. 28. · Zbl 0317.57009
[13] D. W. Curtis, Boundary sets in the Hilbert cube, Topology Appl. 20 (1985), no. 3, 201 – 221. · Zbl 0575.57008 · doi:10.1016/0166-8641(85)90089-6
[14] Doug Curtis, Tadeusz Dobrowolski, and Jerzy Mogilski, Some applications of the topological characterizations of the sigma-compact spaces \?&sup2;_{\?} and \Sigma , Trans. Amer. Math. Soc. 284 (1984), no. 2, 837 – 846. · Zbl 0563.54023
[15] Ryszard Engelking, Topologia ogólna, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna. Tom 47. [Mathematics Library. Vol. 47]. Ryszard Engelking, General topology, PWN — Polish Scientific Publishers, Warsaw, 1977. Translated from the Polish by the author; Monografie Matematyczne, Tom 60. [Mathematical Monographs, Vol. 60].
[16] Steve Ferry, The homeomorphism group of a compact Hilbert cube manifold is an \?\?\?, Ann. of Math. (2) 106 (1977), no. 1, 101 – 119. · Zbl 0375.57014 · doi:10.2307/1971161
[17] Ross Geoghegan, On spaces of homeomorphisms, embeddings, and functions. II. The piecewise linear case, Proc. London Math. Soc. (3) 27 (1973), 463 – 483. · Zbl 0266.57003 · doi:10.1112/plms/s3-27.3.463
[18] David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Topology 9 (1970), 25 – 33. · Zbl 0167.51904 · doi:10.1016/0040-9383(70)90046-7
[19] Jerzy Mogilski, Characterizing the topology of infinite-dimensional \?-compact manifolds, Proc. Amer. Math. Soc. 92 (1984), no. 1, 111 – 118. · Zbl 0577.57005
[20] Katsuro Sakai, On topologies of triangulated infinite-dimensional manifolds, J. Math. Soc. Japan 39 (1987), no. 2, 287 – 300. · Zbl 0652.58007 · doi:10.2969/jmsj/03920287
[21] -, A \( Q\)-manifold local-compactification of metric combinatorial \( \infty \)-manifold, Proc. Amer. Math. Soc. 100 (1987). · Zbl 0633.57009
[22] -, The space of Lipschitz maps from a compactum to a polyhedron, in preparation.
[23] Katsuro Sakai and Raymond Y. Wong, The space of Lipschitz maps from a compactum to a locally convex set, Topology Appl. 32 (1989), no. 3, 223 – 235. · Zbl 0675.58013 · doi:10.1016/0166-8641(89)90030-8
[24] James E. West, Infinite products which are Hilbert cubes, Trans. Amer. Math. Soc. 150 (1970), 1 – 25. · Zbl 0198.56001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.