×

Banach spaces which are semi-L-summands in their biduals. (English) Zbl 0712.46005

We answer a question which remained open for some years by proving that a Banach space X can be a semi-L-summand and not an L-summand in its bidual \(X^{**}\). This means that each element y in \(X^{**}\) has a unique best approximation \(\pi\) (y) in X, the metric projection \(\pi\) satisfies that \(\| y\| =\| \pi (y)\| +\| y-\pi (y)\|\) for all y in \(X^{**}\), but \(\pi\) is not linear. Our examples are spaces A(K) of real-valued continuous affine functions on a compact convex set K which is some set of constant width in the dual of a Banach space which is an L-summand in its bidual. In the simplest case K is a product of infinitely many copies of the triangle. The proof involves some nice ideas on infinite-dimensional sets of constant width as well as the notion of pseudoball and the intersection property introduced by P. Harmand and E. Behrends to deal with proper M-ideals. We also prove a nonlinear version of E. Behrends’ L-M theorem.
Reviewer: R.Payá

MSC:

46B20 Geometry and structure of normed linear spaces
46A55 Convex sets in topological linear spaces; Choquet theory
52A07 Convex sets in topological vector spaces (aspects of convex geometry)

References:

[1] Alfsen, E.M.: Compact convex sets and boundary integrals. Berlin Heidelberg New York: Springer 1971 · Zbl 0209.42601
[2] Alfsen, E.M., Andersen, T.B.: Split faces of compact convex sets. Proc. Lond. Math. Soc.21, 415-442 (1970) · Zbl 0207.12204 · doi:10.1112/plms/s3-21.3.415
[3] Alfsen, E.M., Effros, E.G.: Structure in real Banach spaces. Ann. Math.96, 98-173 (1972) · Zbl 0248.46019 · doi:10.2307/1970895
[4] Asimow, L., Ellis, A.J.: Convexity theory and its applications in functional analysis. London New York: Academic Press 1980 · Zbl 0453.46013
[5] Behrends, E.: M-structure and the Banach-Stone theorem (Lect. Notes Math., vol. 736). Berlin Heidelberg New York: Springer 1979 · Zbl 0436.46013
[6] Behrends, E., Harmand, P.: Banach spaces which are properM-ideals. Stud. Math.81, 159-169 (1985) · Zbl 0529.46015
[7] Cabello, J.C., Mena, J.F., Payá, R., Rodríguez, A.: Banach spaces which are absolute subspaces in their biduals. Quart. J. Math. Oxf. (to appear) · Zbl 0763.46009
[8] Chakerian, G.D., Groemer, H.: Convex bodies of constant width. In: Convexity and its applications. Gruber, P.M., Wills, J.M. (eds.), pp. 49-96. Basel Boston Stuttgart: Birkhäuser 1983 · Zbl 0518.52002
[9] Eggleston, H.G.: Sets of constant width in finite dimensional Banach spaces. Isr. J. Math.3, 163-172 (1965) · Zbl 0166.17901 · doi:10.1007/BF02759749
[10] Godefroy, G.: Parties admissibles d’un espace de Banach. Ann. Sci. École Norm. Super16, 109-122 (1983) · Zbl 0544.46011
[11] Godefroy, G.: Sous-espaces bien disposés deL 1-applications. Trans. Am. Math. Soc.286, 227-249 (1984) · Zbl 0521.46012
[12] Godefroy, G.: Metric characterization of first Baire class linear forms and octahedral norms. Stud. Math.95, 1-15 (1989) · Zbl 0698.46011
[13] Harmand, P.:M-ideale und die Einbettung von eines Banachraumes in seinen Bidualraum. Dissertation, Freie Universität Berlin, 1983
[14] Harmand, P., Lima, Å.: Banach spaces which areM-ideals in their biduals. Trans. Am. Math. Soc.283, 253-264 (1983) · Zbl 0545.46009
[15] Harmand, P., Rao, T.: An intersection property of balls and relations withM-ideals. Math. Z.197, 277-290 (1988) · Zbl 0618.46020 · doi:10.1007/BF01215196
[16] Harmand, P., Werner, D., Werner, W.:M-ideals in Banach spaces and Banach algebras. In preparation · Zbl 0789.46011
[17] Jameson, G.J.O.: Topology and normed spaces. London: Chapman and Hall, 1974 · Zbl 0285.46002
[18] Li, D.: EspacesL-facteurs de leurs biduaux: bonne disposition, meilleure approximation et proprieté de Radon-Nikodym. Quart. J. Math. Oxf.38, 229-243 (1987) · Zbl 0631.46020 · doi:10.1093/qmath/38.2.229
[19] Lima, Å.: Intersection properties of balls and subspaces of Banach spaces. Trans. Am. Math. Soc.227, 1-62 (1977) · Zbl 0347.46017 · doi:10.1090/S0002-9947-1977-0430747-4
[20] Lima, Å.:M-ideals of compact operators in classical Banach spaces. Math. Scand.44, 207-217 (1979) · Zbl 0407.46019
[21] Lima, Å., Yost, D.T.: Absolutely Chebyshev subspaces. Proc. Centre Math. Anal. Australian Nat. Univ.20, 116-127 (1988) · Zbl 0673.41035
[22] Mena, J.F., Payá, R., Rodríguez, A.: Absolute subspaces of Banach spaces. Quart. J. Math. Oxford40, 43-64 (1989) · Zbl 0693.46014 · doi:10.1093/qmath/40.1.43
[23] Payá, R., Yost, D.T.: The two-ball property: transitivity and examples. Mathematika35, 190-197 (1988) · Zbl 0651.46024 · doi:10.1112/S0025579300015187
[24] Perdrizet, F.: Espaces de Banach ordonnés et ideaux. J. Math. Pures Appl.49, 61-98 (1970) · Zbl 0194.43203
[25] Saatkamp, K.: Schnitteigenschaften und beste Approximation. Dissertation, Bonn, 1979
[26] Yost, D.: Irreducible convex sets. Mathematika (to appear) · Zbl 0761.52011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.