×

A concavity condition for existence of a negative value in Neumann-Poincaré spectrum in three dimensions. (English) Zbl 07081339

Summary: It is proved that if a bounded domain in three dimensions satisfies a certain concavity condition, then the Neumann-Poincaré operator on either the boundary of the domain or its inversion in a sphere has a negative value in its spectrum. The concavity condition is quite simple, and is satisfied if there is a point on the boundary at which the Gaussian curvature is negative.

MSC:

47A45 Canonical models for contractions and nonselfadjoint linear operators
31B25 Boundary behavior of harmonic functions in higher dimensions

References:

[1] Ahner, John F., On the eigenvalues of the electrostatic integral operator. II, J. Math. Anal. Appl., 181, 2, 328-334 (1994) · Zbl 0791.47008 · doi:10.1006/jmaa.1994.1025
[2] Ahner, John F.; Arenstorf, Richard F., On the eigenvalues of the electrostatic integral operator, J. Math. Anal. Appl., 117, 1, 187-197 (1986) · Zbl 0593.45002 · doi:10.1016/0022-247X(86)90255-6
[3] Ammari, Habib; Ciraolo, Giulio; Kang, Hyeonbae; Lee, Hyundae; Milton, Graeme W., Spectral theory of a Neumann-Poincar\'{e}-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., 208, 2, 667-692 (2013) · Zbl 1282.78004 · doi:10.1007/s00205-012-0605-5
[4] Ammari, Habib; Kang, Hyeonbae, Polarization and moment tensors: With applications to inverse problems and effective medium theory, Applied Mathematical Sciences 162, x+312 pp. (2007), Springer, New York · Zbl 1220.35001
[5] Ammari, Habib; Millien, Pierre; Ruiz, Matias; Zhang, Hai, Mathematical analysis of plasmonic nanoparticles: the scalar case, Arch. Ration. Mech. Anal., 224, 2, 597-658 (2017) · Zbl 1375.35515 · doi:10.1007/s00205-017-1084-5
[6] AJKKM K. Ando, Y. Ji, H. Kang, D. Kawagoe, and Y. Miyanishi, Spectral structure of the Neumann-Poincar\'e operator on tori, arXiv:1810.09693. · Zbl 07129764
[7] BZ E. Bonnetier and H. Zhang, Characterization of the essential spectrum of the Neumann-Poincar\'e operator in 2D domains with corner via Weyl sequences, Revista Matematica Iberoamericana, to appear. · Zbl 1423.35268
[8] Feng, Tingting; Kang, Hyeonbae, Spectrum of the Neumann-Poincar\'{e} operator for ellipsoids and tunability, Integral Equations Operator Theory, 84, 4, 591-599 (2016) · Zbl 1336.35259 · doi:10.1007/s00020-016-2280-7
[9] Folland, Gerald B., Introduction to partial differential equations, xii+324 pp. (1995), Princeton University Press, Princeton, NJ · Zbl 0841.35001
[10] Gustafson, Karl E.; Rao, Duggirala K. M., Numerical range, Universitext, xiv+189 pp. (1997), Springer-Verlag, New York · Zbl 0874.47003 · doi:10.1007/978-1-4613-8498-4
[11] Helsing, Johan; Kang, Hyeonbae; Lim, Mikyoung, Classification of spectra of the Neumann-Poincar\'{e} operator on planar domains with corners by resonance, Ann. Inst. H. Poincar\'{e} Anal. Non Lin\'{e}aire, 34, 4, 991-1011 (2017) · Zbl 1435.35266 · doi:10.1016/j.anihpc.2016.07.004
[12] Helsing, Johan; Perfekt, Karl-Mikael, The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points, J. Math. Pures Appl. (9), 118, 235-287 (2018) · Zbl 1400.31002 · doi:10.1016/j.matpur.2017.10.012
[13] Kang, Hyeonbae; Kim, Kyoungsun; Lee, Hyundae; Shin, Jaemin; Yu, Sanghyeon, Spectral properties of the Neumann-Poincar\'{e} operator and uniformity of estimates for the conductivity equation with complex coefficients, J. Lond. Math. Soc. (2), 93, 2, 519-545 (2016) · Zbl 1337.35047 · doi:10.1112/jlms/jdw003
[14] Kang, Hyeonbae; Lim, Mikyoung; Yu, Sanghyeon, Spectral resolution of the Neumann-Poincar\'{e} operator on intersecting disks and analysis of plasmon resonance, Arch. Ration. Mech. Anal., 226, 1, 83-115 (2017) · Zbl 1386.35285 · doi:10.1007/s00205-017-1129-9
[15] Khavinson, Dmitry; Putinar, Mihai; Shapiro, Harold S., Poincar\'{e}’s variational problem in potential theory, Arch. Ration. Mech. Anal., 185, 1, 143-184 (2007) · Zbl 1119.31001 · doi:10.1007/s00205-006-0045-1
[16] MacMillan, William Duncan, The theory of the potential, MacMillan’s Theoretical Mechanics, xiii+469 pp. (1958), Dover Publications, Inc., New York · Zbl 0088.15803
[17] Martensen, Erich, A spectral property of the electrostatic integral operator, J. Math. Anal. Appl., 238, 2, 551-557 (1999) · Zbl 0939.45001 · doi:10.1006/jmaa.1999.6538
[18] MFZ I. D. Mayergoyz, D. R. Fredkin, and Z. Zhang, Electrostatic (plasmon) resonances in nanoparticles, Phys. Rev. B 72 (2005), 155412.
[19] Miya Y. Miyanishi, Weyl’s law for the eigenvalues of the Neumann-Poincar\'e operators in three dimensions: Willmore energy and surface geometry, arXiv:1806.03657v1.
[20] Neumann-87 C. Neumann, \`“Uber die Methode des arithmetischen Mittels, Erste and zweite Abhandlung, Leipzig 1887/88, in Abh. d. Kgl. S\'”achs Ges. d. Wiss., IX and XIII. · JFM 19.1029.01
[21] Perfekt, Karl-Mikael; Putinar, Mihai, The essential spectrum of the Neumann-Poincar\'{e} operator on a domain with corners, Arch. Ration. Mech. Anal., 223, 2, 1019-1033 (2017) · Zbl 1377.35203 · doi:10.1007/s00205-016-1051-6
[22] Poincar\'{e}, H., La m\'{e}thode de Neumann et le probl\`eme de Dirichlet, Acta Math., 20, 1, 59-142 (1897) · JFM 27.0316.01 · doi:10.1007/BF02418028
[23] Ritter, S., The spectrum of the electrostatic integral operator for an ellipsoid. Inverse scattering and potential problems in mathematical physics, Oberwolfach, 1993, Methoden Verfahren Math. Phys. 40, 157-167 (1995), Peter Lang, Frankfurt am Main · Zbl 0817.45003
[24] Schiffer, M., The Fredholm eigen values of plane domains, Pacific J. Math., 7, 1187-1225 (1957) · Zbl 0138.30003
[25] Verchota, Gregory, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, J. Funct. Anal., 59, 3, 572-611 (1984) · Zbl 0589.31005 · doi:10.1016/0022-1236(84)90066-1
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.