×

Compressible and incompressible flow: An algorithm for all seasons. (English) Zbl 0708.76099

Summary: A semi-implicit algorithm is presented which allows the solution of both incompressible and compressible flows to be achieved in a single code. Both transient and steady state solutions are available and compressibility no longer dictates the time step limits. Difficulties of compressible flow with uniform interpolation which exist due to local incompressibility in low velocity regions are avoided. The transition to the fully explicit form at high Mach number flows can be accomplished automatically yielding a form slightly different from that of conventional procedures. The algorithm is available for shallow water equations where its advantages promise to be large. Several examples illustrate the paper.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76D05 Navier-Stokes equations for incompressible viscous fluids
Full Text: DOI

References:

[1] Zienkiewicz, O. C.; Löhner, R.; Morgan, K.; Nakazawa, S., Finite elements in mechanics of fluids—A decade of progress, (Gallagher, R. H.; etal., Finite Elements in Fluids, 5 (1984)), 1-26
[2] Zienkiewicz, O. C.; Löhner, R.; Morgan, K.; Peraire, J., High speed compressible flow and other advection dominated problems of fluid mechanics, (Gallagher, R. H.; etal., Finite Elements in Fluids, 6 (1985), Wiley: Wiley New York), 41-48
[3] Löhner, R.; Morgan, K.; Zienkiewicz, O. C., The solution of non-linear, hyperbolic equation systems by the finite element method, Internat J. Numer. Methods Fluids, 4, 1043-1063 (1984) · Zbl 0551.76002
[4] Peraire, J.; Peiro, J.; Formaggia, L.; Morgan, K.; Zienkiewicz, O. C., Finite element Euler computations in 3-D, Internat. J. Numer. Methods Engrg., 26, 2135-2159 (1988) · Zbl 0665.76073
[5] Peraire, J.; Vahdati, M.; Morgan, K.; Zienkiewicz, O. C., Adaptive remeshing for compressible flow computations, J. Comput. Phys., 42, 449-466 (1987) · Zbl 0631.76085
[6] Oden, J. T.; Strouboulis, T.; Devloo, P., Adaptive finite element methods for the analysis of inviscid compressible flow: Part I. Fast refinement/unrefinement and moving mesh methods for unstructured meshes, Comput. Methods Appl. Mech. Engrg., 59, 327-362 (1986) · Zbl 0593.76080
[7] Löhner, R.; Morgan, K.; Zienkiewicz, O. C., An adaptive finite element procedure for compressible high speed flows, Comput. Methods Appl. Mech. Engrg., 51, 441-465 (1985) · Zbl 0568.76074
[8] Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2, 12-26 (1967) · Zbl 0149.44802
[9] Patankar, S. V.; Spalding, D. B., A calculation procedure for heat, mass and momentum transfer in 3-D parabolic flows, Internat. J. Heat Mass Transfer, 15, 1787-1806 (1972) · Zbl 0246.76080
[10] Donea, J.; Giuliani, S.; Laval, H.; Quartapelle, L., Finite element solution of the unsteady Navier-Stokes equations by the fractional step method, Comput. Methods Appl. Mech. Engrg., 30, 53-73 (1982) · Zbl 0481.76037
[11] Schneider, G.; Rathby, G., Finite element analysis of incompressible fluid incorporating equal order pressure and velocity interpolation, Comput. Methods Fluids, 49-88 (1980)
[12] Comini, G.; del Giudice, S., Finite element solution of the incompressible Navier-Stokes equation, Numer. Heat Transf., 5, 463-478 (1982)
[13] Kawahara, M.; Ohmiya, K., Finite element analysis of density flow using the velocity correction method, Internat J. Numer. Methods Fluids, 5, 981-993 (1985) · Zbl 0575.76005
[14] Hassan, O.; Morgan, K.; Peraire, J., Adaptive implicit-explicit finite element scheme for compressible viscous high speed flows, (AIAA Paper 89-0363 (1989), Reno: Reno Nevada) · Zbl 0687.76067
[15] Gode, E.; Rhyming, I. L., 3-D computation of the flow in a Francis runnet, Sultzer Techn. Rev., 4, 31-35 (1987)
[16] Zienkiewicz, O. C.; Taylor, R. L., (The Finite Element Method, Vol. I (1989), McGraw-Hill: McGraw-Hill New York)
[17] Bristeau, M. O.; Glowinski, R.; Mantel, B.; Périaux, J.; Rogé, G., Self-adaptive finite element method for 3-D, compressible Navier-Stokes flow simulation in aerospace engineering, (Proc. 11th Conf. Numer. Methods in Fluid Dynamics. Proc. 11th Conf. Numer. Methods in Fluid Dynamics, Williamsburg, PA (1988), Springer: Springer Berlin) · Zbl 0667.76115
[18] Donea, J., A Taylor-Galerkin method for convective transport problems, Internat. J. Numer. Methods Engrg., 20, 101-119 (1984) · Zbl 0524.65071
[19] Oden, J. T., Formulation and application of certain primal and mixed finite element models of finite deformations of elastic bodies, (Glowinski, R.; Lions, J. L., Computing Methods in Applied Sciences and Engineering (1974), Springer: Springer Berlin) · Zbl 0285.73073
[20] Christie, I.; Griffiths, D. F.; Mitchell, A. R.; Zienkiewicz, O. C., Finite element methods for second order equations with significant first derivatives, Internat. J. Numer. Methods Engrg., 10, 1389-1396 (1976) · Zbl 0342.65065
[21] Zienkiewicz, O. C.; Henrich, J. C.; Huyakorn, P. S.; Mitchell, A. R., An upwind finite element scheme for two-dimensional convective transport equations, Internat. J. Numer. Methods Engrg., 11, 131-144 (1977) · Zbl 0353.65065
[22] Hughes, T. J.R.; Brooks, A., A multidimensional upwind scheme with no cross-wind diffusion, (Hughes, T. J.R., Finite Elements for Convection Dominated Flows. Finite Elements for Convection Dominated Flows, AMD, Vol. 34 (1979), ASME: ASME New York) · Zbl 0423.76067
[23] Kelly, D. N.; Nakazawa, S.; Zienkiewicz, O. C., A note on anisostopic balancing dissipation in finite element method approximation to convective diffusion problems, Internat. J. Numer. Methods Engrg., 15, 1705-1711 (1980) · Zbl 0452.76068
[24] L. Demkowicz, Private Communication, TICOM, Austin, Texas, 1989.; L. Demkowicz, Private Communication, TICOM, Austin, Texas, 1989.
[25] Peraire, J.; Zienkiewicz, O. C.; Morgan, K., Shallow water problems; a general explicit formulation, Internat. J. Numer. Methods Engrg., 22, 547-579 (1986) · Zbl 0588.76027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.