×

Numerical evaluation of Cauchy principal value integrals with singular integrands. (English) Zbl 0708.65023

Convergence results are proved for sequences of interpolatory product integration rules for evaluating Cauchy principal value integrals over a finite interval, where the integrand (apart from the Cauchy denominator), can be regarded as a product of two functions k and f, the second of which is approximated by interpolation to construct integration rules. However, in the present case f is allowed to be singular at some point other than the Cauchy singularity, and the singularity is either ignored or avoided in the evaluations.
The paper is concerned primarily with Gauss, Lobatto or Radau type points derived from orthogonal polynomials. The generalized smooth Jacobi case is discussed in detail.
Reviewer: W.E.Smith

MSC:

65D32 Numerical quadrature and cubature formulas
41A55 Approximate quadratures
30E20 Integration, integrals of Cauchy type, integral representations of analytic functions in the complex plane
Full Text: DOI

References:

[1] Giuliana Criscuolo and Giuseppe Mastroianni, On the convergence of an interpolatory product rule for evaluating Cauchy principal value integrals, Math. Comp. 48 (1987), no. 178, 725 – 735. · Zbl 0638.65017
[2] G. Criscuolo, G. Mastroianni, and P. Nevai, Associated generalized Jacobi functions and polynomials (submitted). · Zbl 0729.42014
[3] G. Monegato, The numerical evaluation of one-dimensional Cauchy principal value integrals, Computing 29 (1982), no. 4, 337 – 354 (English, with German summary). · Zbl 0485.65017 · doi:10.1007/BF02246760
[4] Paul G. Nevai, Orthogonal polynomials, Mem. Amer. Math. Soc. 18 (1979), no. 213, v+185. · Zbl 0405.33009 · doi:10.1090/memo/0213
[5] Paul Nevai and Péter Vértesi, Mean convergence of Hermite-Fejér interpolation, J. Math. Anal. Appl. 105 (1985), no. 1, 26 – 58. · Zbl 0567.41002 · doi:10.1016/0022-247X(85)90095-2
[6] P. Rabinowitz, Some practical aspects in the numerical evaluation of Cauchy principal value integrals, Internat. J. Comput. Math. 20 (1986), 283-298. · Zbl 0654.65019
[7] Philip Rabinowitz, Rates of convergence of Gauss, Lobatto, and Radau integration rules for singular integrands, Math. Comp. 47 (1986), no. 176, 625 – 638. · Zbl 0619.41022
[8] Philip Rabinowitz, Numerical integration in the presence of an interior singularity, J. Comput. Appl. Math. 17 (1987), no. 1-2, 31 – 41. · Zbl 0627.41022 · doi:10.1016/0377-0427(87)90036-7
[9] Philip Rabinowitz, On an interpolatory product rule for evaluating Cauchy principal value integrals, BIT 29 (1989), no. 2, 347 – 355. · Zbl 0688.65019 · doi:10.1007/BF01952688
[10] Philip Rabinowitz and Ian H. Sloan, Product integration in the presence of a singularity, SIAM J. Numer. Anal. 21 (1984), no. 1, 149 – 166. · Zbl 0547.65011 · doi:10.1137/0721010
[11] Philip Rabinowitz and William E. Smith, Interpolatory product integration for Riemann-integrable functions, J. Austral. Math. Soc. Ser. B 29 (1987), no. 2, 195 – 202. · Zbl 0636.41021 · doi:10.1017/S0334270000005713
[12] Ian H. Sloan and William E. Smith, Properties of interpolatory product integration rules, SIAM J. Numer. Anal. 19 (1982), no. 2, 427 – 442. · Zbl 0491.41002 · doi:10.1137/0719027
[13] William E. Smith and Ian H. Sloan, Product-integration rules based on the zeros of Jacobi polynomials, SIAM J. Numer. Anal. 17 (1980), no. 1, 1 – 13. · Zbl 0429.41023 · doi:10.1137/0717001
[14] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., vol. 23, Amer. Math. Soc., Providence, R. I., 1959. · Zbl 0089.27501
[15] P. Vértesi, Remarks on convergence of Gaussian quadrature for singular integrals, Acta Math. Hungar. 53 (1989), no. 3-4, 399 – 405. · Zbl 0694.41035 · doi:10.1007/BF01953377
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.