×

Linearized inverse scattering problems in acoustics and elasticity. (English) Zbl 0706.73031

Summary: Using the single-scattering approximation we invert for the material parameters of an acoustic two-parameter medium and then for a three- parameter isotropic elastic medium. Our procedure is related to various methods of depth migration in seismics, i.e. methods for locating major discontinuities in the subsurface material without specifying which quantities are discontinuous or by how much they jump. Our asymptotic multiparameter inversion makes use of amplitude information to reconstruct the size of the jumps in the parameters describing the medium.
We allow spatially varying background parameters (both vertically and laterally) and an almost arbitrary source-receiver configuration. The computation is performed in the time domain and we use all available data even if it is redundant. This ability to incorporate the redundant information in a natural way is based upon a formula for double integrals over spheres. We solve for perturbations in different parameters treating separately P-to-P, P-to-S, S-to-P, and S-to-S data. It turns out that one may invert using subsets of the data, or all of it together. We also describe modifications to our scheme which allow us to use the Kirchhoff instead of the Born approximation for the forward problem when the scatterers are smooth surfaces of discontinuity.

MSC:

74J25 Inverse problems for waves in solid mechanics
74J20 Wave scattering in solid mechanics
86A15 Seismology (including tsunami modeling), earthquakes
Full Text: DOI

References:

[1] Beylkin, G.; Burridge, R., Multiparameter inversion for acoustic and elastic media, (Expanded Abstracts of 57th Ann. Int. SEG Meeting (1987), Society of Exploration Geophysics: Society of Exploration Geophysics New Orleans), 747-749
[2] Beylkin, G., Generalized Radon Transform and its Applications, (Ph.D. Thesis (1982), New York University) · Zbl 0823.44004
[3] Beylkin, G., The inversion problem and applications of the generalized Radon transform, Comm. Pure Appl. Math., 37, 579-599 (1984) · Zbl 0577.44003
[4] Beylkin, G., Imaging of discontinuities in the inverse scattering problem by inversion of a causal generalized Radon transform, J. Math. Phys., 26, 99-108 (1985)
[5] Miller, D. E.; Oristaglio, M.; Beylkin, G., A new formalism and old heuristic for seismic migration, (Expanded Abstracts of 54th Ann. Int. SEG Meeting (1984), Society of Exploration Geophysics: Society of Exploration Geophysics Atlanta), 704-707
[6] Miller, D. E.; Oristaglio, M.; Beylkin, G., A new slant on seismic imaging: migration and integral geometry, Geophysics, 52, 943-964 (1987)
[7] Beylkin, G.; Oristaglio, M.; Miller, D., Spatial resolution of migration algorithms, (Berkhout, A. J.; Ridder, J.; van der Waal, L. F., Acoustical Imaging, 14 (1985), Plenum: Plenum New York), 155-167
[8] Beylkin, G., Reconstructing discontinuities in multidimensional inverse scattering problems: smooth errors vs small errors, Applied Optics, 24, 4086-4088 (1985)
[9] Chang, W.; Carrion, P.; Beylkin, G., Wave front sets of solutions to linearized inverse scattering problems, Inverse Problems, 3, 683-690 (1987) · Zbl 0643.58026
[10] Hagedoorn, J. G., A process of seismic reflection interpretation, Geophysical Prospecting, 2, 85-127 (1954)
[11] Gardner, G. H.F., Migration of Seismic Data, (Geophysics reprints series, no. 4 (1985), Society of Exploration Geophysics) · Zbl 0030.07401
[12] Stolt, R. H.; Weglein, A. B., Migration and inversion of seismic data, Geophysics, 50, 2458-2472 (1985)
[13] Amer. Math. Soc. Transl., 1, 253-304 (1955), also · Zbl 0066.33603
[14] Marchenko, V. A., The construction of the potential energy from the phases of the scattered waves, Dokl. Akad. Nauk SSSR, 104, 695-698 (1955) · Zbl 0066.06602
[15] Stickler, D. C., Inverse scattering for stratified elastic media, Wave Motion, 8, 101-112 (1986) · Zbl 0575.73035
[16] Deift, P.; Trubowitz, E., Inverse scattering on the line, Comm. Pure Appl. Math., 32, 121-251 (1979) · Zbl 0388.34005
[17] Coen, S., Density and compressibility profiles of a layered acoustic medium from precritical incidence data, Geophysics, 46, 1244-1246 (1981)
[18] Cohen, J. K.; Bleistein, N., An inverse method for determining small variations in propagation speed, SIAM J. Appl. Math., 32, 784-799 (1977) · Zbl 0367.73027
[19] Bleistein, N.; Cohen, J. K., Velocity inversion for acoustic waves, Geophysics, 44, 1077-1087 (1979)
[20] Claerbout, J. F., Toward a unified theory of reflector mapping, Geophysics, 36, 467-481 (1971)
[21] Claerbout, J. F.; Doherty, S. M., Downward continuation of moveout corrected seismograms, Geophysics, 37, 741-768 (1972)
[22] Stolt, R. H., Migration by Fourier transform, Geophysics, 43, 23-48 (1978)
[23] Clayton, R. W.; Stolt, R. H., A Born-WKBJ inversion method for acoustic reflection data, Geophysics, 46, 1559-1567 (1981)
[24] French, W. S., Two-dimensional and three-dimensional migration of model-experiment reflection profiles, Geophysics, 39, 265-277 (1974)
[25] French, W. S., Computer migration of oblique seismic reflection profiles, Geophysics, 40, 961-980 (1975)
[26] Schneider, W. A., Integral formulation for migration in two and three dimensions, Geophysics, 43, 49-76 (1978)
[27] Norton, S. J., Generation of separate density and compressibility images in a tissue, Ultrason. Imag., 4, 336-350 (1982)
[28] Devaney, A. J., Variable density acoustic tomography, J. Acoust. Soc. Amer., 78, 120-130 (1985) · Zbl 0572.92005
[29] Boyse, W. E.; Keller, J. B., Inverse elastic scattering in three dimensions, J. Acoust. Soc. Amer., 79, 215-218 (1986)
[30] Burridge, R.; Beylkin, G., On double integrals over spheres, Inverse Problems, 4, 1-10 (1988) · Zbl 0652.44004
[31] Wu, R.; Aki, K., Scattering characteristics of elastics waves by an elastic heterogeneity, Geophysics, 50, 582-595 (1985)
[32] Devaney, A. J.; Oristaglio, M. L., A plane-wave decomposition for elastic wave fields applied to the separation of \(P\)-waves and \(S\)-waves in vector seismic data, Geophysics, 51, 419-423 (1986)
[33] Bleistein, N., On imaging of reflectors in the earth, Geophysics, 52, 931-942 (1987)
[34] Parsons, R., Estimating reservior mechanical properties using constant offset images of reflection coefficients and incident angles, (Expanded Abstracts of 56th Ann. Int. SEG Meeting (1986), Society of Exploration Geophysics: Society of Exploration Geophysics Houston), 617-620
[35] Tarantola, A., The seismics reflection inverse problem, (Santosa, F.; etal., Inverse Problems of Acoustic and Elastic Waves (1984), SIAM: SIAM Philadelphia, PA) · Zbl 0692.35150
[36] Mora, P., Nonlinear elastic inversion of multioffset seismic data, (Expanded Abstracts of 56th Ann. Int. SEG Meeting (1986), Society of Exploration Geophysics: Society of Exploration Geophysics Houston), 533-537
[37] Burridge, R., Some Mathematical Topics in Seismology, (Lecture Notes (1976), Courant Institute of Math. Sciences: Courant Institute of Math. Sciences New York) · Zbl 0354.73078
[38] Aki, K.; Richards, P. G., (Quantitative Seismology. Theory and methods, Vol. 1 (1980), W.H. Freeman: W.H. Freeman San Francisco, CA)
[39] Bazer, J.; Burridge, R., Energy partition in the reflection and refraction of plane waves, SIAM J. Appl. Math., 34, 78-92 (1978) · Zbl 0373.35046
[40] Beylkin, G., Mathematical theory for seismic migration and spatial resolution, (Proc. 1986 Workshop on Inversion and Deconvolution. Proc. 1986 Workshop on Inversion and Deconvolution, Rome (1987))
[41] Hörmander, L., Fourier integral operators, I, Acta Math., 127, 79-183 (1971) · Zbl 0212.46601
[42] Treves, F., (Introduction to Pseudodifferential and Fourier Integral Operators: Vol. 1 & 2 (1980), Plenum: Plenum New York) · Zbl 0453.47027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.